Machine Learning Approaches for Customer Churn Prediction: Balancing Accuracy and Interpretability

Збережено в:
Бібліографічні деталі
Опубліковано в::ProQuest Dissertations and Theses (2025)
Автор: Chen, Jack
Опубліковано:
ProQuest Dissertations & Theses
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3250725869
003 UK-CbPIL
020 |a 9798293838837 
035 |a 3250725869 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Chen, Jack 
245 1 |a Machine Learning Approaches for Customer Churn Prediction: Balancing Accuracy and Interpretability 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The study addresses the problem of customer churn in the telecommunications industry, where retaining existing users is significantly more cost-effective than acquiring new ones. It investigates the application of machine learning techniques for churn prediction using demographic, contractual, service, and billing information. A range of models are evaluated, from interpretable approaches such as Logistic Regression and Decision Trees to advanced methods including Random Forest, Gradient Boosting, Support Vector Machines, and Neural Networks. The analysis emphasizes predictive performance and interpretability, identifies key factors driving churn, and discusses trade-offs among different approaches. The findings provide both methodological insights into the use of machine learning for churn prediction and practical guidance for developing data-driven strategies to improve customer retention. 
653 |a Statistics 
653 |a Computer engineering 
653 |a Technical communication 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3250725869/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3250725869/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch