Printed Recyclable and Flexible Thermocouple Temperature Sensors

Guardado en:
Detalles Bibliográficos
Publicado en:Advanced Sensor Research vol. 4, no. 8 (Aug 1, 2025)
Autor principal: Wang, Xiaotao
Otros Autores: Guo, Lin, Zhang, Qihao, Zabila, Yevhen, Xu, Rui, Makarov, Denys
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Temperature sensors play a pivotal role in modern electronics, finding use across a broad spectrum of applications. Nonetheless, traditional manufacturing methods for these devices consume substantial energy and materials, and their widespread utilization often contributes to substantial electronic waste, presenting significant environmental concerns. In this research, recyclable printed thermocouple temperature sensors are developed that emphasize both cost‐efficiency and ecological responsibility. The sensors utilize readily available fillers (i.e., nickel flakes and carbon black powders), paving the way for scalable production. By incorporating re‐dissolvable polymers as binders, the end‐of‐life sensors can be easily disassembled, eliminating the need for harsh treatment or hazardous chemicals. The use of ferromagnetic nickel flakes enhances the straightforward separation of different filler components, streamlining the recycling workflow. Importantly, the gentle recycling conditions preserve the functional fillers, preventing degradation or oxidation and thus enabling the reprocessed sensors to retain their original performance. In addition, the sensors boast high mechanical flexibility, making them suitable for seamless integration into various practical scenarios. All these innovations not only reduce economic costs but also align with the goals of sustainable development, demonstrating a promising pathway for the future of temperature sensing technology.
ISSN:2751-1219
DOI:10.1002/adsr.202400182
Fuente:Computer Science Database