Integrating Quantum Computing Algorithms with Predictive Analytics of Customer Behaviour in E-Commerce

Shranjeno v:
Bibliografske podrobnosti
izdano v:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 1-7
Glavni avtor: Afzal, Abdullah
Drugi avtorji: Muhammad Ehsan Rana, Vazeerudeen Abdul Hameed, Safavi, Seyedmostafa
Izdano:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Teme:
Online dostop:Citation/Abstract
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3251504702
003 UK-CbPIL
024 7 |a 10.1109/ASSIC64892.2025.11158364  |2 doi 
035 |a 3251504702 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Afzal, Abdullah  |u School of Computing, Asia Pacific University of Technology & Innovation,Kuala Lumpur,Malaysia 
245 1 |a Integrating Quantum Computing Algorithms with Predictive Analytics of Customer Behaviour in E-Commerce 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)Conference Start Date: 2025 May 16Conference End Date: 2025 May 18Conference Location: Bhubaneswar, IndiaThe remarkable expansion of e-commerce, together with its competitive market, has created difficulties for traditional machine learning models to forecast customer actions when dealing with intricate datasets. The encountered problems with conventional machine learning models in predictive analytics for customer behaviour in e-commerce have led researchers to explore quantum computing algorithms as a potential solution. The main goal of this research work is to analyse how quantum computing technology and quantum algorithms can address the problems of inaccuracy and high dimensionality and speed and unbalanced datasets. The system implementation integrates quantum infrastructure through quantum processing units that utilize parallel processing to handle large datasets efficiently. The proposed algorithms for customer behaviour prediction models include Quantum Support Vector Machines, Quantum K-means Clustering, Quantum Boltzmann Machines, Quantum Principal Component Analysis, Quantum Neural Networks, and Quantum Ensemble Learning. These algorithms use quantum parallelism to achieve better accuracy while speeding up computations and handling unbalanced datasets. The AI framework combines traditional machine learning pipeline with quantum computing enhancements to implement quantum algorithms. The framework consists of data pre-processing followed by Quantum Machine Learning (QML) model training and Quantum-Powered AI to address imbalanced data while reducing prediction biases. Real-time insights and visualization and analytics from the advance predictive analytics dashboard enable stakeholders to make data-driven decisions. The system implements security and privacy measures through quantum cryptography which uses quantum cryptographic algorithms to boost customer data security. The research results present a potential solution to predictive analytics challenges which would transform the E-commerce industry. 
653 |a Parallel processing 
653 |a Quantum computing 
653 |a Quantum cryptography 
653 |a Predictive analytics 
653 |a Datasets 
653 |a Machine learning 
653 |a Electronic commerce 
653 |a Customers 
653 |a Cluster analysis 
653 |a Neural networks 
653 |a Principal components analysis 
653 |a Support vector machines 
653 |a Prediction models 
653 |a Clustering 
653 |a Pipelining (computers) 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Ensemble learning 
653 |a Cybersecurity 
653 |a Vector quantization 
653 |a Economic 
700 1 |a Muhammad Ehsan Rana  |u School of Computing, Asia Pacific University of Technology & Innovation,Kuala Lumpur,Malaysia 
700 1 |a Vazeerudeen Abdul Hameed  |u School of Computing, Asia Pacific University & Technology and Innovation,Kuala Lumpur,Malaysia 
700 1 |a Safavi, Seyedmostafa  |u School of Technology, Asia Pacific University & Technology and Innovation,Kuala Lumpur,Malaysia 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 1-7 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3251504702/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch