A Comparison of Table Addition Methods Approximating Elementary Functions and Finding Optimal Partition Schemes

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Pease, Jacob
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3251907812
003 UK-CbPIL
020 |a 9798293855766 
035 |a 3251907812 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Pease, Jacob 
245 1 |a A Comparison of Table Addition Methods Approximating Elementary Functions and Finding Optimal Partition Schemes 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Elementary functions, such as reciprocals and trigonometric functions, are critical in computer engineering applications like digital signal processing and graphics processing. However, their direct computation in hardware is resource-intensive. Table-based approximation methods, such as the Symmetric Table Addition Method (STAM) and the Multipartite Table Method, address this challenge by using two or more tables and an adder to approximate a target elementary function. This thesis compares the STAM and Multi-partite table methods through a rigorous analysis of their partitioning schemes, compression techniques, and error equations. In this Thesis, algorithms are developed to identify optimal partition schemes that minimize table sizes while still ensuring faithful rounding, and in some cases pushing the boundaries on previously reported partition schemes. Additionally, a Python-based GUI was implemented for exploring these methods. The findings reveal that Multipartite’s slope method o↵ers negligible error reduction over the STAM’s derivative-based approach for small partition counts, and error bounds were slightly too strict, missing optimal configurations. These insights suggest potential hybrid approaches combining Multi-partite’s notation with the STAM’s Taylor-series framework, giving us more exact constraints for finding optimal partition schemes.  
653 |a Computer engineering 
653 |a Computer science 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3251907812/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3251907812/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch