Numerical Simulation of Stamping and Hemming for Aluminum Alloy Automotive Hood Assembly

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Journal of Physics: Conference Series vol. 3104, no. 1 (Sep 2025), p. 012082
Kaituhi matua: Sun, Ying
Ētahi atu kaituhi: Tu, Xiaowen, Ge, Biao, Wang, Yanbo, Liu, Shengxiang, Hou, Zeran, Min, Junying
I whakaputaina:
IOP Publishing
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3252206777
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3104/1/012082  |2 doi 
035 |a 3252206777 
045 2 |b d20250901  |b d20250930 
100 1 |a Sun, Ying  |u School of Mechanical Engineering, Tongji University , Shanghai 201804, China 
245 1 |a Numerical Simulation of Stamping and Hemming for Aluminum Alloy Automotive Hood Assembly 
260 |b IOP Publishing  |c Sep 2025 
513 |a Journal Article 
520 3 |a Aluminum alloys have been increasingly applied to automotive closures and body-in-white, such as hoods, to achieve lightweight. The automotive hood assembly consists of inner and outer panels, and its manufacturing processes involve stamping and hemming. The complex manufacturing processes cause aluminum alloy sheets to undergo intricate strain paths and hardening behaviors, presenting challenges in the precise forming simulation of aluminum alloy automotive hood assembly. In this study, the advanced constitutive model, which includes the BBC2005 yield locus and the Yoshida-Uemori(Y-U) kinematic hardening model that incorporates elastic modulus degradation, was calibrated and used to establish an accurate forming simulation of an aluminum alloy automotive hood assembly. Uniaxial and biaxial tensile tests were carried out to calibrate the yield locus. Additionally, tension-compression tests were performed to capture the hardening behavior of aluminum alloy sheets under reverse loading paths, particularly the Bauschinger effect. Compared to other constitutive models, e.g. isotropic hardening model and Barlat-Lian89 yield locus, the advanced constitutive model improved the simulation accuracy by 16.7% for the outer panel, 31.5% for the inner panel, and 11.4% for the whole assembly. The results demonstrate that the advanced constitutive model is capable of capturing intricate strain paths and hardening behaviors of aluminum alloy sheets in manufacturing processes of automotive hood assembly, and also improves the accuracy of springback prediction under complex loading paths. 
653 |a Accuracy 
653 |a Simulation 
653 |a Tensile tests 
653 |a Stamping 
653 |a Reverse loading 
653 |a Modulus of elasticity 
653 |a Hardening 
653 |a Constitutive models 
653 |a Bauschinger effect 
653 |a Compression tests 
653 |a Kinematics 
653 |a Aluminum alloys 
653 |a Weight reduction 
653 |a Metal sheets 
653 |a Manufacturing 
653 |a Alloys 
653 |a Aluminum base alloys 
653 |a Springback 
700 1 |a Tu, Xiaowen  |u NIO , Shanghai 201805, China 
700 1 |a Ge, Biao  |u School of Mechanical Engineering, Tongji University , Shanghai 201804, China 
700 1 |a Wang, Yanbo  |u NIO , Shanghai 201805, China 
700 1 |a Liu, Shengxiang  |u NIO , Shanghai 201805, China 
700 1 |a Hou, Zeran  |u School of Mechanical Engineering, Tongji University , Shanghai 201804, China 
700 1 |a Min, Junying  |u School of Mechanical Engineering, Tongji University , Shanghai 201804, China 
773 0 |t Journal of Physics: Conference Series  |g vol. 3104, no. 1 (Sep 2025), p. 012082 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3252206777/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3252206777/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch