Collecting Financial Data From Online Sources: Enhancing Large Language Models With Real-Time Search
שמור ב:
| הוצא לאור ב: | Journal of Organizational and End User Computing vol. 37, no. 1 (2025), p. 1-24 |
|---|---|
| מחבר ראשי: | |
| יצא לאור: |
IGI Global
|
| נושאים: | |
| גישה מקוונת: | Citation/Abstract Full Text - PDF |
| תגים: |
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3252275207 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1546-2234 | ||
| 022 | |a 1546-5012 | ||
| 022 | |a 1043-6464 | ||
| 022 | |a 1063-2239 | ||
| 024 | 7 | |a 10.4018/JOEUC.388470 |2 doi | |
| 035 | |a 3252275207 | ||
| 045 | 2 | |b d20250101 |b d20250331 | |
| 084 | |a 11187 |2 nlm | ||
| 100 | 1 | |a Li, Yang |u Montclair State University, USA | |
| 245 | 1 | |a Collecting Financial Data From Online Sources: Enhancing Large Language Models With Real-Time Search | |
| 260 | |b IGI Global |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Timely and accurate access to financial data is crucial for empirical research in accounting and finance. However, current data collection processes are often manual, inconsistent, and difficult to scale. This study asks: How can large language models (LLMs) be effectively used to automate financial data collection? Using design science research methodology (DSRM), the author develops a modular architecture that integrates a real-time search API and auxiliary information processing into LLM workflows. The study applies the model to two tasks: extracting ESG report release dates and identifying customer firm tickers from COMPUSTAT. The system achieves 96% and 95% accuracy, respectively, comparable to human performance. This study advances LLM applications in accounting by providing a scalable, practical framework for automating financial data retrieval. | |
| 653 | |a Information processing | ||
| 653 | |a Data processing | ||
| 653 | |a Data collection | ||
| 653 | |a Accounting | ||
| 653 | |a Research design | ||
| 653 | |a Human performance | ||
| 653 | |a Retrieval | ||
| 653 | |a Research methodology | ||
| 653 | |a Automation | ||
| 653 | |a Data retrieval | ||
| 653 | |a Chatbots | ||
| 653 | |a Large language models | ||
| 653 | |a Artificial intelligence | ||
| 653 | |a Language modeling | ||
| 653 | |a Real time | ||
| 773 | 0 | |t Journal of Organizational and End User Computing |g vol. 37, no. 1 (2025), p. 1-24 | |
| 786 | 0 | |d ProQuest |t ABI/INFORM Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3252275207/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3252275207/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |