Ferroelectric-based Pockels photonic memory

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 8329-8340
Autor principal: Xu, Zefeng
Otros Autores: Chen, Chun-Kuei, Lin, Hong-Lin, Sivan, Maheswari, Zamburg, Evgeny, Lee, James Yong-Meng, Venkatesan, Suresh, Danner, Aaron, Thean, Aaron Voon-Yew
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Efficient data transfer between memory and photonic components is crucial for a wide range of applications. However, this necessity brings forth energy-efficient data movement challenges associated with the memory wall, underscoring the demand for a fast and low-energy electro-optic photonic memory solution. Here, we demonstrate a class of energy-efficient electro-optic devices, namely Pockels photonic memory, that combines low-field switchable ferroelectrics with lithium niobate’s Pockel’s effect. Among such devices, this article will describe in detail the integrated embodiment of a ferroelectric field-effect transistor with lithium niobate on insulator micro ring resonator. We achieve switchable and non-volatile multiple optical memory states (6 states per transistor) with ultra-low energy cost (femto Joule/state), while achieving robust 10 year data retention and read-write endurance exceeding 107 cycles. Furthermore, we demonstrate the possibility of linear memory state stacking. The Pockels photonic memory enables the scaling of reconfigurable photonic systems into the femto Joule/state energy efficiencies.Xu et al. report a Pockels photonic memory by integrating ferroelectric field-effect transistor with lithium niobate on insulator micro ring resonator. Through the manipulation of ferroelectric domains and the Pockels effect, the device achieves energy consumption at fJ/state level.
ISSN:2041-1723
DOI:10.1038/s41467-025-63850-z
Fuente:Health & Medical Collection