Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:PLoS One vol. 20, no. 9 (Sep 2025), p. e0331307
Príomhchruthaitheoir: Sobhani, Mahbub E
Rannpháirtithe: Rodela, Anika Tasnim, Dewan Farid
Foilsithe / Cruthaithe:
Public Library of Science
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3252484243
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0331307  |2 doi 
035 |a 3252484243 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Sobhani, Mahbub E 
245 1 |a Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers. 
653 |a Oversampling 
653 |a Collaboration 
653 |a Deep learning 
653 |a Datasets 
653 |a Classification 
653 |a Communication 
653 |a Sampling methods 
653 |a Supervised learning 
653 |a Cybersecurity 
653 |a Malware 
653 |a Intrusion 
653 |a Sampling 
653 |a Machine learning 
653 |a Sampling techniques 
653 |a Decision trees 
653 |a Big Data 
653 |a Bagging 
653 |a Neural networks 
653 |a Data sampling 
653 |a Communications networks 
653 |a Design 
653 |a Algorithms 
653 |a Ensemble learning 
653 |a Environmental 
700 1 |a Rodela, Anika Tasnim 
700 1 |a Dewan Farid 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0331307 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3252484243/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3252484243/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3252484243/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch