Charactering Uncertainty of Frequency Regulation Capability: A Physics-Informed Unit Commitment Model Considering Time-Varying Dynamics

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Physics: Conference Series vol. 3111, no. 1 (Sep 2025), p. 012004
Autor principal: Wu, Wenlong
Otros Autores: Wang, Zhongguan, Li, Xialin, Guo, Li, Wang, Chengshan
Publicado:
IOP Publishing
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3252527913
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3111/1/012004  |2 doi 
035 |a 3252527913 
045 2 |b d20250901  |b d20250930 
100 1 |a Wu, Wenlong 
245 1 |a Charactering Uncertainty of Frequency Regulation Capability: A Physics-Informed Unit Commitment Model Considering Time-Varying Dynamics 
260 |b IOP Publishing  |c Sep 2025 
513 |a Journal Article 
520 3 |a As the penetration of low-inertia wind power continues increasing, primary frequency regulation (PFR) capability of power systems faces severe risk of reserve shortage. Considering the complex interaction of wind turbines (WTs) and time-varying frequency dynamics, the PFR capability of wind power is significantly influenced by unit commitment (UC) scheme and uncertain wind speed. Therefore, it is essential to account for the uncertain PFR capability in UC stage to prevent frequency incidents. This paper proposes a physics-informed UC model accounting for the probability distribution of wind power output and droop coefficient. The method employs the Koopman operator theory to establish a high-dimensional linear relationship between wind speed and the maximum droop coefficient, and obtains a probability distribution of PFR capability by predicting wind speed, which is incorporated as a constraint in the UC model. Simulation results demonstrate that this approach ensures sufficient PFR capability in UC stage while exhibiting promising real-time performance. 
653 |a Wind turbines 
653 |a Wind power 
653 |a Unit commitment 
653 |a Real time 
653 |a Probability distribution 
653 |a Wind speed 
700 1 |a Wang, Zhongguan 
700 1 |a Li, Xialin 
700 1 |a Guo, Li 
700 1 |a Wang, Chengshan 
773 0 |t Journal of Physics: Conference Series  |g vol. 3111, no. 1 (Sep 2025), p. 012004 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3252527913/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3252527913/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch