The Evolution and Future of Medical Robotic Diagnostics

Uloženo v:
Podrobná bibliografie
Vydáno v:ITM Web of Conferences vol. 78 (2025)
Hlavní autor: Zhao, Zihan
Vydáno:
EDP Sciences
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3252537492
003 UK-CbPIL
022 |a 2431-7578 
022 |a 2271-2097 
024 7 |a 10.1051/itmconf/20257802021  |2 doi 
035 |a 3252537492 
045 2 |b d20250101  |b d20251231 
084 |a 268430  |2 nlm 
100 1 |a Zhao, Zihan 
245 1 |a The Evolution and Future of Medical Robotic Diagnostics 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a This article provides a systematic review of research in the development of reliable and autonomous robotic systems capable not only of data collection but also of independent data analysis and interpretation. To better understand how to achieve such functions, four core modules are discussed. First, a data acquisition and preprocessing pipeline ensures the quality, consistency, and usability of incoming data by using multiple sensors to collect data and Manhattan distance to conduct correlation analysis. Second, using Probabilistic Neuro-Fuzzy Systems integrated with Artificial Intelligence (AI) along with Temporal Fusion Net and the model based on the SE-ResNet50 network, they are constructed and optimized for real-time diagnosis models. Third, fault prediction models including a cyber-physical system and a hybrid model forecast failures and maximize accuracy. Fourth, human-computer interaction can be improved by applying cloud-assisted wearable devices that are significant for reducing the interaction challenges and helping in real-time monitoring and diagnosis. In addition to the proposed framework, the paper analyzes key challenges according to the methods. It also discusses potential solutions and future development strategies. The findings of this study are expected to offer a solid foundation for advancing innovative research that supports the growth and wider adoption of medical robotic diagnostics. 
653 |a Wearable technology 
653 |a Data analysis 
653 |a Multisensor applications 
653 |a Fault diagnosis 
653 |a Data acquisition 
653 |a Cyber-physical systems 
653 |a Artificial intelligence 
653 |a Real time 
653 |a Prediction models 
653 |a Data collection 
653 |a Fuzzy systems 
653 |a Robotics 
653 |a Correlation analysis 
773 0 |t ITM Web of Conferences  |g vol. 78 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3252537492/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3252537492/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch