A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:PLOS Digital Health vol. 4, no. 1 (Jan 2025), p. e0000535
Үндсэн зохиолч: Linsen, Sam
Бусад зохиолчид: Kamoun, Aurélie, Andrews, Gunda, Mwenifumbo, Tamara, Chancy Chavula, Nchimunya, Lindiwe, Tsai, Yucheng, Mulenga, Namwaka, Godfrey Kadewele, Kajombo, Eunice Nahache, Sunkutu, Veronica, Shawa, Jane, Kadam, Rigveda, Arentz, Matthew
Хэвлэсэн:
Public Library of Science
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3252725941
003 UK-CbPIL
022 |a 2767-3170 
024 7 |a 10.1371/journal.pdig.0000535  |2 doi 
035 |a 3252725941 
045 2 |b d20250101  |b d20250131 
100 1 |a Linsen, Sam 
245 1 |a A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a AI based software, including computer aided detection software for chest radiographs (CXR-CAD), was developed during the pandemic to improve COVID-19 case finding and triage. In high burden TB countries, the use of highly portable CXR and computer aided detection software has been adopted more broadly to improve the screening and triage of individuals for TB, but there is little evidence in these settings regarding COVID-19 CAD performance. We performed a multicenter, retrospective cross-over study evaluating CXRs from individuals at risk for COVID-19. We evaluated performance of CAD software and radiologists in comparison to COVID-19 laboratory results in 671 individuals evaluated for COVID-19 at sites in Zambia and Malawi between January 2021 and June 2022. All CXRs were interpreted by an expert radiologist and two commercially available COVID-19 CXR-CAD software. Radiologists interpreted CXRs for COVID-19 with a sensitivity of 73% (95% CI: 69%- 76%) and specificity of 49% (95% CI: 40%-58%). One CAD software (CAD2) showed performance in diagnosing COVID-19 that was comparable to that of radiologists, (AUC-ROC of 0.70 (95% CI: 0.65–0.75)), while a second (CAD1) showed inferior performance (AUC-ROC of 0.57 (95% CI: 0.52–0.63)). Agreement between CAD software and radiologists was moderate for diagnosing COVID-19, and agreement was very good in differentiating normal and abnormal CXRs in this high prevalent population. The study highlights the potential of CXR-CAD as a tool to support effective triage of individuals in Malawi and Zambia during the pandemic, particularly for distinguishing normal from abnormal CXRs. These findings suggest that while current AI-based diagnostics like CXR-CAD show promise, their effectiveness varies significantly. In order to better prepare for future pandemics, there is a need for representative training data to optimize performance in key populations, and ongoing data collection to maintain diagnostic accuracy, especially as new disease strains emerge. 
651 4 |a Malawi 
651 4 |a Zambia 
653 |a Pandemics 
653 |a Patients 
653 |a Software 
653 |a Teaching hospitals 
653 |a Artificial intelligence 
653 |a Data collection 
653 |a Algorithms 
653 |a Privacy 
653 |a COVID-19 diagnostic tests 
653 |a Medical imaging 
653 |a Respiratory diseases 
653 |a COVID-19 
653 |a Coronaviruses 
653 |a Tuberculosis 
653 |a Social 
700 1 |a Kamoun, Aurélie 
700 1 |a Andrews, Gunda 
700 1 |a Mwenifumbo, Tamara 
700 1 |a Chancy Chavula 
700 1 |a Nchimunya, Lindiwe 
700 1 |a Tsai, Yucheng 
700 1 |a Mulenga, Namwaka 
700 1 |a Godfrey Kadewele 
700 1 |a Kajombo, Eunice Nahache 
700 1 |a Sunkutu, Veronica 
700 1 |a Shawa, Jane 
700 1 |a Kadam, Rigveda 
700 1 |a Arentz, Matthew 
773 0 |t PLOS Digital Health  |g vol. 4, no. 1 (Jan 2025), p. e0000535 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3252725941/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3252725941/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3252725941/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch