Leveraging Social Media as a Data Source for Improved Urban Flood Monitoring
Guardat en:
| Publicat a: | ProQuest Dissertations and Theses (2025) |
|---|---|
| Autor principal: | |
| Publicat: |
ProQuest Dissertations & Theses
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3253506432 | ||
| 003 | UK-CbPIL | ||
| 020 | |a 9798293861934 | ||
| 035 | |a 3253506432 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 66569 |2 nlm | ||
| 100 | 1 | |a Ankon, Swagato Biswas | |
| 245 | 1 | |a Leveraging Social Media as a Data Source for Improved Urban Flood Monitoring | |
| 260 | |b ProQuest Dissertations & Theses |c 2025 | ||
| 513 | |a Dissertation/Thesis | ||
| 520 | 3 | |a Urban flooding threatens infrastructure, public safety, and economic stability, with increasing frequency due to climate change and urbanization. Traditional monitoring methods - sensors, models, and remote sensing - are effective but limited by cost, time delays, and low spatial resolution. This thesis explores Twitter as a complementary data source for urban flood monitoring. A framework was developed to collect, filter, and analyze flood-related tweets using natural language processing, machine learning, sentiment analysis, and geocoding. Social media data was then integrated with rainfall data to generate near real-time flood maps. Additionally, a rain-on-mesh simulation using HEC-RAS incorporated terrain, land cover, and soil data to validate results. Findings show that approximately 75% of flood-affected zones identified via Twitter matched those from model-generated inundation maps. This demonstrates that social media can enhance situational awareness and support rapid flood response, making it a valuable tool for supporting traditional urban flood monitoring systems. | |
| 653 | |a Environmental engineering | ||
| 653 | |a Water resources management | ||
| 653 | |a Civil engineering | ||
| 773 | 0 | |t ProQuest Dissertations and Theses |g (2025) | |
| 786 | 0 | |d ProQuest |t ProQuest Dissertations & Theses Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3253506432/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3253506432/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |