Machine learning techniques for spatiotemporal traffic prediction in 5G cellular networks

Guardado en:
Bibliografiske detaljer
Udgivet i:SN Applied Sciences vol. 7, no. 10 (Oct 2025), p. 1047
Hovedforfatter: Hussien, Alaa A.
Andre forfattere: Nashaat, Heba, Abdel-Kader, Rehab F.
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3253527006
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-06746-3  |2 doi 
035 |a 3253527006 
045 2 |b d20251001  |b d20251031 
100 1 |a Hussien, Alaa A.  |u Port Said University, Electrical Engineering Department, Faculty of Engineering, Port Said, Egypt (GRID:grid.440879.6) (ISNI:0000 0004 0578 4430) 
245 1 |a Machine learning techniques for spatiotemporal traffic prediction in 5G cellular networks 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a Wireless traffic prediction is vital for network planning and management, enabling real-time decisions and both short- and long-term forecasting. Accurate and efficient techniques improve cellular networks by optimizing resource allocation, adapting to dynamic user behavior, and ensuring high-quality service through pattern recognition in network traffic. This facilitates proactive management, including load balancing and beam coordination. This paper developed eight models for cellular network traffic prediction using the telecom Italia big data challenge dataset, which provides a comprehensive view of urban activities and telecommunications in Milan City. These models include seasonal-AutoRegressive-integrated-moving-average, Facebook-prophet, adaptive-boosting (AdaBoost), extreme-gradient-boosting (XGBoost), Long-short-term memory (LSTM), convolutional-neural-network (CNN), hybrid CNN-LSTM, and ensemble model that combined of the outputs of CNN and LSTM. These models were applied to predict different types of network traffic, namely the Internet, SMS, and call traffic across distinct geographic regions: city center, commercial, residential, and business. Each region exhibited unique temporal traffic patterns influenced by weekdays, weekends, and local activities. These models are evaluated based on performance metrics and computational time. The results demonstrate that the ensemble CNN+LSTM is the most accurate model, achieving R2 values of 0.990 for Internet, 0.986 for call, and 0.976 for SMS, followed by the hybrid CNN-LSTM and LSTM models. These models are associated with a high level of computational complexity. Meanwhile, the AdaBoost and XGBoost models obtain practical alternatives for balancing accuracy with computational efficiency. Finally, the ensemble CNN+LSTM surpasses prior research, demonstrating enhanced predictive reliability across all network traffic types. 
653 |a Resource allocation 
653 |a Wireless networks 
653 |a City centres 
653 |a Datasets 
653 |a Deep learning 
653 |a Forecasting 
653 |a Trends 
653 |a Communication 
653 |a Pattern recognition 
653 |a Communications traffic 
653 |a Artificial neural networks 
653 |a Social networks 
653 |a Digital transmission 
653 |a Computer applications 
653 |a Machine learning 
653 |a Time series 
653 |a Cellular communication 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Efficiency 
653 |a Performance measurement 
653 |a Artificial intelligence 
653 |a Internet access 
653 |a Internet 
653 |a Network management systems 
653 |a Predictions 
653 |a Network reliability 
653 |a Traffic 
653 |a Neural networks 
653 |a Computational efficiency 
653 |a Connectivity 
653 |a Real time 
653 |a Computing time 
653 |a Economic 
700 1 |a Nashaat, Heba  |u Port Said University, Electrical Engineering Department, Faculty of Engineering, Port Said, Egypt (GRID:grid.440879.6) (ISNI:0000 0004 0578 4430) 
700 1 |a Abdel-Kader, Rehab F.  |u Port Said University, Electrical Engineering Department, Faculty of Engineering, Port Said, Egypt (GRID:grid.440879.6) (ISNI:0000 0004 0578 4430) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 10 (Oct 2025), p. 1047 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253527006/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3253527006/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253527006/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch