Autonomous NextG System Vulnerability Detection From Protocol Verification to Runtime Validation

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Yang, Jingda
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3253583467
003 UK-CbPIL
020 |a 9798293874583 
035 |a 3253583467 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Yang, Jingda 
245 1 |a Autonomous NextG System Vulnerability Detection From Protocol Verification to Runtime Validation 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Vulnerability detection is crucial for defending against cyber threats and protecting wireless communication systems. Despite advancements in robust detection methods, such as machine learning and scalable cloud-based vulnerability detection, existing approaches to automatic vulnerability detection still face several limitations: the lack of fully automated protocol-based vulnerability detection, heavy dependence on computational resources for detecting implementation vulnerabilities, and the inability to update learned attack patterns during runtime.This dissertation presents an advanced vulnerability detection framework that addresses these gaps through three key contributions. First, we developed a pretrained large language model-based extractor for formal properties, enabling the automatic translation of wireless protocols into formal verification formats. This method achieved over 97% classification accuracy on the 3GPP RRC protocol, supporting effective formal verification. Second, we designed a formal-guided fuzz testing framework that integrates protocol analysis with a digital twin testing platform, allowing efficient detection of high-risk vulnerabilities. Third, we introduced a probability-based strategy that reduces the exponential growth of time complexity in vulnerability testing to a linear process, significantly minimizing computational overhead.Together, these contributions form a unified, automated vulnerability detection system that combines formal methods, dynamic analysis, and adaptive runtime pattern recognition to enhance cybersecurity in wireless systems. 
653 |a Computer engineering 
653 |a Computer science 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253583467/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253583467/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch