Bridging Heritage Knowledge and Digital Models: An HBIM Integration Framework

Guardat en:
Dades bibliogràfiques
Publicat a:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. X-M-2-2025 (2025), p. 365-373
Autor principal: Wang, Xi
Altres autors: Wu, Cong, Zhang, Xiao, Pan, Ruolin
Publicat:
Copernicus GmbH
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3253584663
003 UK-CbPIL
022 |a 2194-9042 
022 |a 2194-9050 
024 7 |a 10.5194/isprs-annals-X-M-2-2025-365-2025  |2 doi 
035 |a 3253584663 
045 2 |b d20250101  |b d20251231 
084 |a 263032  |2 nlm 
100 1 |a Wang, Xi  |u School of Architecture, Tianjin University, NO. 92 Weijin Rd, Nankai District, Tianjin, P. R. China 
245 1 |a Bridging Heritage Knowledge and Digital Models: An HBIM Integration Framework 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Architectural heritage conservation demands the integration of precise physical documentation and interpretative design knowledge, yet current HBIM approaches remain fragmented: ‘scan-to-BIM’ prioritizes geometric accuracy at the expense of semantic richness, while “rule-based reconstruction” emphasizes idealized logic over as-built evidence. To bridge this gap, this study introduces the KSQI paradigm (Knowledge-Semantics-Quantities-Image), a novel framework that systematically connects domain expertise with digital modelling to balance spatial accuracy and architectural semantics. The research develops an as-recognized modelling or semantic-driven modelling through (1) a conservation cycle-guided information indexing system for semantic-driven knowledge integration, (2) a data-model decoupling workflow that teams from different disciplines maintain their working habits, handling data and models separately, then recoupling data-model by BIM team, and (3) a pattern book tooling solution including check forms for hierarchical investigation, algorithm modelling generator. By linking physical attributes (quantities/images) with design logic (semantics/knowledge), KSQI enhances information management, supports iterative knowledge updates, and facilitates informed conservation decisions. Case studies demonstrate its effectiveness in encoding both as-built conditions and historical, traditional design/construction principles, reinforcing the ‘H’ (history/heritage knowledge) in HBIM. This framework advances heritage documentation toward the smart metric survey, ensuring models serve as dynamic, semantically rich assets for conservation, research, dissemination, and digital twin applications. 
653 |a Semantics 
653 |a Documentation 
653 |a Decoupling 
653 |a Modelling 
653 |a Knowledge 
653 |a Conservation 
653 |a Digital twins 
653 |a Knowledge management 
653 |a Knowledge based engineering 
653 |a Tooling 
653 |a Design 
653 |a Geometric accuracy 
653 |a Economic 
700 1 |a Wu, Cong  |u School of Architecture, Tianjin University, NO. 92 Weijin Rd, Nankai District, Tianjin, P. R. China 
700 1 |a Zhang, Xiao  |u School of Architecture, Tianjin University, NO. 92 Weijin Rd, Nankai District, Tianjin, P. R. China 
700 1 |a Pan, Ruolin  |u School of Architecture, Tianjin University, NO. 92 Weijin Rd, Nankai District, Tianjin, P. R. China 
773 0 |t ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences  |g vol. X-M-2-2025 (2025), p. 365-373 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253584663/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253584663/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch