Developing a nationwide registry of UK veterans seeking help from sector charities—a machine learning approach to stratification

Guardado en:
Detalles Bibliográficos
Publicado en:European Journal of Public Health vol. 35, no. 1 (Feb 2025), p. 5
Autor principal: Serra, Giuseppe
Otros Autores: Tomietto, Marco, McGill, Andrew, Kiernan, Matthew
Publicado:
Oxford University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3253586023
003 UK-CbPIL
022 |a 1101-1262 
022 |a 1464-360X 
024 7 |a 10.1093/eurpub/ckae141  |2 doi 
035 |a 3253586023 
045 2 |b d20250201  |b d20250228 
084 |a 53202  |2 nlm 
100 1 |a Serra, Giuseppe  |u Department of Nursery, Midwifery and Health, Northumbria University , Newcastle upon Tyne, United Kingdom 
245 1 |a Developing a nationwide registry of UK veterans seeking help from sector charities—a machine learning approach to stratification 
260 |b Oxford University Press  |c Feb 2025 
513 |a Journal Article 
520 3 |a The assistance to veterans in the UK is provided by the National Health Service and over 1800 military charities. These charities count services using different definitions and reporting systems, so to date a national registry of service usage does not exist. The aim of the Map Of Need Aggregation ResearCH study is to build a standardized registry of service usage data for the military charity sector. Data are completely anonymized by adopting a Secure Hashing Algorithm. A unique anonymous identifier is generated allowing both privacy protection and avoiding double counts. Data are standardized and linked with an automated process to create an aggregated dataset. The dataset describes the population, using both a priori and machine learning approaches. To date a total of 42 509 veterans with 128 423 needs are included. The mean age was 60.1 years, and 90% were male. 65% were receiving other benefits, 5% were homeless and 1% were in prison. 65% of the needs recorded concerned social wellbeing. 40% of veterans received assistance in at least two different years. The k-means clustering approach returned 4 subgroups of use that were identical to those created using a priori knowledge. The dataset is the most comprehensive source of veteran charity usage data in the UK to date. Service usage is generally homogenous among subgroups, but some differences were highlighted indicating that younger, non-officer veterans may be more at risk of presenting with more complex needs. These first useful insights can help allocate resources to build an effective preventive strategy for more complex cases. 
651 4 |a United Kingdom--UK 
653 |a Homelessness 
653 |a Datasets 
653 |a Help seeking behavior 
653 |a Charities 
653 |a Needs 
653 |a Health services 
653 |a Hash based algorithms 
653 |a Veterans 
653 |a Homeless people 
653 |a Machine learning 
653 |a Well being 
653 |a Social interest 
653 |a Learning algorithms 
653 |a Use statistics 
653 |a Cluster analysis 
653 |a Data 
653 |a Subgroups 
653 |a Clustering 
653 |a Privacy 
653 |a Vector quantization 
653 |a Military service 
653 |a Social well being 
653 |a Stratification 
653 |a Resource allocation 
653 |a Prevention 
653 |a Social 
700 1 |a Tomietto, Marco  |u Department of Nursery, Midwifery and Health, Northumbria University , Newcastle upon Tyne, United Kingdom 
700 1 |a McGill, Andrew  |u Department of Nursery, Midwifery and Health, Northumbria University , Newcastle upon Tyne, United Kingdom 
700 1 |a Kiernan, Matthew  |u Department of Nursery, Midwifery and Health, Northumbria University , Newcastle upon Tyne, United Kingdom 
773 0 |t European Journal of Public Health  |g vol. 35, no. 1 (Feb 2025), p. 5 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253586023/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253586023/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch