A heterogeneous graph neural network assisted multi-agent reinforcement learning for parallel service function chain deployment

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Journal of King Saud University. Computer and Information Sciences vol. 37, no. 8 (Oct 2025), p. 236
Egile nagusia: Ai, Yintan
Beste egile batzuk: Li, Hua, Ruan, Hongwei, Liu, Hanlin
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3253955990
003 UK-CbPIL
022 |a 1319-1578 
024 7 |a 10.1007/s44443-025-00258-1  |2 doi 
035 |a 3253955990 
045 2 |b d20251001  |b d20251031 
100 1 |a Ai, Yintan  |u Inner Mongolia University, College of Computer Science, Hohhot, China (GRID:grid.411643.5) (ISNI:0000 0004 1761 0411) 
245 1 |a A heterogeneous graph neural network assisted multi-agent reinforcement learning for parallel service function chain deployment 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a The deployment of parallel Service Function Chains (SFCs) in Network Function Virtualization (NFV) environments presents significant challenges in jointly optimizing Virtual Network Function (VNF) parallelization and placement decisions. Traditional approaches typically decouple these decisions, leading to suboptimal performance and inefficient resource utilization. This paper proposes HGNN-PSFC, a novel heterogeneous graph neural network-assisted multi-agent deep reinforcement learning framework that jointly optimizes VNF parallelization and placement for parallel SFC deployment. Our approach employs cooperative agents: a Parallelization Agent that determines optimal VNF parallelization structures, and multiple Placement Agents that make VNF placement decisions. The framework utilizes a heterogeneous graph representation to capture complex relationships between VNFs, substrate network topology, and current VNF placement states. Through Multi-Agent Proximal Policy Optimization (MAPPO) training within a Centralized Training with Decentralized Execution (CTDE) paradigm, our method achieves effective coordination between parallelization and placement decisions. Extensive experimental results demonstrate that HGNN-PSFC achieves near-optimal performance with approximately 92% of the optimal algorithm’s effectiveness while maintaining polynomial computational complexity. 
653 |a Network function virtualization 
653 |a Software 
653 |a Placement 
653 |a Traffic 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Optimization 
653 |a Graph representations 
653 |a Polynomials 
653 |a Flexibility 
653 |a Effectiveness 
653 |a Multiagent systems 
653 |a Complexity 
653 |a Virtual networks 
653 |a Machine learning 
653 |a Deep learning 
653 |a Resource utilization 
653 |a Graphical representations 
653 |a Network topologies 
653 |a Decisions 
653 |a Efficiency 
700 1 |a Li, Hua  |u Inner Mongolia University, College of Computer Science, Hohhot, China (GRID:grid.411643.5) (ISNI:0000 0004 1761 0411) 
700 1 |a Ruan, Hongwei  |u Inner Mongolia University, College of Computer Science, Hohhot, China (GRID:grid.411643.5) (ISNI:0000 0004 1761 0411) 
700 1 |a Liu, Hanlin  |u Inner Mongolia University, College of Computer Science, Hohhot, China (GRID:grid.411643.5) (ISNI:0000 0004 1761 0411) 
773 0 |t Journal of King Saud University. Computer and Information Sciences  |g vol. 37, no. 8 (Oct 2025), p. 236 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3253955990/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3253955990/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3253955990/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch