Integration of Real-Time Sequential Root Cause Analysis and Multivariate Moving Average-Real-Time Sequential Testing Models for Abnormal Fish Movement Detection in Aquaculture Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Informatica vol. 49, no. 23 (Jul 2025), p. 153-166
Autor principal: Zhou, JiaHong
Publicado:
Slovenian Society Informatika / Slovensko drustvo Informatika
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254147455
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49i23.7660  |2 doi 
035 |a 3254147455 
045 2 |b d20250701  |b d20250731 
084 |a 179436  |2 nlm 
100 1 |a Zhou, JiaHong  |u Information Engineering Department, Eastern Liaoning University, Dandong 118000, Liaoning, PR China 
245 1 |a Integration of Real-Time Sequential Root Cause Analysis and Multivariate Moving Average-Real-Time Sequential Testing Models for Abnormal Fish Movement Detection in Aquaculture Systems 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Jul 2025 
513 |a Journal Article 
520 3 |a In fish farming, monitoring and understanding fish movement patterns are crucial for optimizing farm management and ensuring fish health and welfare. Fish movement behavior within aquaculture systems can provide insights into feeding habits, environmental conditions, and overall well-being. By tracking movements, such as swimming patterns and group dynamics, farm operators can detect anomalies early, indicating potential health issues or environmental stressors. Detecting abnormal fish movement in aquaculture settings is critical for ensuring fish health and farm productivity. This study proposes the application of Real-Time Sequential-Root Cause Analysis (RTS-RCA) and Multivariate Moving Average-Real-Time Sequential Testing (MMA-RTST) models for effective abnormal detection. RTS-RCA identifies potential anomalies by sequentially analyzing real-time data streams, while MMA-RTST enhances detection accuracy through multivariate statistical analysis and sequential testing methodologies. By integrating these models, the system can promptly identify and respond to abnormal fish behaviors, such as erratic swimming patterns or unusual group formations, which may indicate health issues or environmental stressors. RTS-RCA analyzes real-time data streams to identify anomalies with a detection accuracy exceeding 90%. Simultaneously, MMA-RTST employs multivariate statistical analysis to enhance detection sensitivity, achieving a false alarm rate of less than 5%. Integrating these models enables timely identification of abnormal fish behaviors, such as erratic swimming or unusual group formations, crucial for proactive management and maintaining fish health in dynamic aquaculture environments. 
653 |a Behavior 
653 |a Accuracy 
653 |a Technological change 
653 |a Deep learning 
653 |a Root cause analysis 
653 |a Farm management 
653 |a Productivity 
653 |a Aquaculture 
653 |a Data analysis 
653 |a Data transmission 
653 |a Swimming 
653 |a Monitoring systems 
653 |a Fish 
653 |a Statistical analysis 
653 |a Efficiency 
653 |a Water quality 
653 |a Machine learning 
653 |a Motion perception 
653 |a False alarms 
653 |a Computer vision 
653 |a Group dynamics 
653 |a Environmental stewardship 
653 |a Sensors 
653 |a Sustainability 
653 |a Farms 
653 |a Multivariate analysis 
653 |a Multivariate statistical analysis 
653 |a Algorithms 
653 |a Anomalies 
653 |a Surveillance 
653 |a Movement 
653 |a Real time 
773 0 |t Informatica  |g vol. 49, no. 23 (Jul 2025), p. 153-166 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254147455/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254147455/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254147455/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch