Applying Mathematical Modeling Optimization Algorithms to Solve Shop Floor Scheduling Problems

Guardado en:
Bibliografiske detaljer
Udgivet i:Informatica vol. 49, no. 19 (May 2025), p. 127-143
Hovedforfatter: Lv, Xing
Andre forfattere: Chang, Hejie
Udgivet:
Slovenian Society Informatika / Slovensko drustvo Informatika
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3254147534
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49119.7113  |2 doi 
035 |a 3254147534 
045 2 |b d20250501  |b d20250531 
084 |a 179436  |2 nlm 
100 1 |a Lv, Xing 
245 1 |a Applying Mathematical Modeling Optimization Algorithms to Solve Shop Floor Scheduling Problems 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c May 2025 
513 |a Journal Article 
520 3 |a Shop floor scheduling is a key optimization problem in contemporary manufacturing, seeking to enhance production tasks and resources while increasing productivity and lowering costs. This paper solves the shop floor scheduling problem using an extensive mathematical model and an enhanced simulated annealing (SA) algorithm. The mathematical model captures intricate aspects such as machine allocation, job sequencing, batch transportation, and assembly procedures. To effectively solve the issue, the enhanced SA algorithm employs significant enhancement tactics like knowledge - driven initialization, a problem-specific neighborhood structure, and a restart mechanism to improve solution quality. The methodology is validated using an extensive experimental setup that investigates different situations with varying machine counts and job intricacies. Key findings show a 25% average decrease in makespan, a 20% rise in scheduling effectiveness, and a 15% reduction in computation time, demonstrating the algorithm's efficiency. These results highlight the theoretical and practical importance of this method in tackling real-world shop floor scheduling issues. 
653 |a Scheduling 
653 |a Mathematical models 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Productivity 
653 |a Algorithms 
653 |a Job shops 
653 |a Sequences 
653 |a Manufacturing 
653 |a Simulated annealing 
653 |a Heuristic 
653 |a Neighborhoods 
653 |a Optimization algorithms 
653 |a Materials handling 
653 |a Efficiency 
700 1 |a Chang, Hejie 
773 0 |t Informatica  |g vol. 49, no. 19 (May 2025), p. 127-143 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254147534/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254147534/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254147534/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch