K-LSTM-ECM Model for Predicting Poverty Alleviation Impacts of Digital Financial Inclusion

Saved in:
Bibliographic Details
Published in:Informatica vol. 49, no. 17 (Apr 2025), p. 105-119
Main Author: Li, Yichuan
Published:
Slovenian Society Informatika / Slovensko drustvo Informatika
Subjects:
Online Access:Citation/Abstract
Full Text
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3254147538
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49i17.7621  |2 doi 
035 |a 3254147538 
045 2 |b d20250401  |b d20250430 
084 |a 179436  |2 nlm 
100 1 |a Li, Yichuan  |u Zhoukou Vocational and Technical College, Zhoukou 466002, China 
245 1 |a K-LSTM-ECM Model for Predicting Poverty Alleviation Impacts of Digital Financial Inclusion 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Apr 2025 
513 |a Journal Article 
520 3 |a To evaluate the poverty alleviation effects of digital financial inclusion, this study proposes a comprehensive financial data analysis and prediction method by integrating K-means clustering, Long Short-Term Memory (LSTM) neural networks, and the Error Correction Model (ECM), collectively forming the K-LSTM-ECM model. The model first employs K-means clustering to group user data and uncover behavioral patterns of different user groups. Subsequently, LSTM is used to model and predict time-series data. Finally, the ECM is introduced to correct systematic errors and enhance prediction accuracy. The model was validated using diverse datasets, including World Bank Open Data, IMF economic indicators, and UNDP Human Development Reports. The results show that the error range of K-LSTM-ecm model is the lowest in mean square error, mean absolute error and root mean square error (e.g., mean square error is the lowest 1.44%), and the prediction precision rate reaches 91.23% on average. In terms of recall rate and false positive rate, K-LSTM-ecm model outperforms other models, with the highest recall rate reaching 94.45% and the lowest false positive rate reaching 2.08%. Through case studies, the prediction results of K-LSTM-ecm model for 2021 and 2022 are closer to the actual data, with poverty values of 0.212 and 0.181, respectively, and the prediction results of key indicators such as the proportion of subsistence population and rural disposable income are also better than other models. These findings verify the efficiency and reliability of the K-LSTM-ECM model in predicting the poverty alleviation effects of digital financial inclusion, providing robust data support for policymakers and the financial industry. 
651 4 |a India 
653 |a Mean square errors 
653 |a Accuracy 
653 |a Deep learning 
653 |a Financial inclusion 
653 |a Forecasting 
653 |a Error correction 
653 |a Data analysis 
653 |a Clustering 
653 |a Time series 
653 |a Innovations 
653 |a Recall 
653 |a Systematic errors 
653 |a Machine learning 
653 |a Poverty 
653 |a Cluster analysis 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Error correction & detection 
653 |a Mean square values 
653 |a User groups 
653 |a Support vector machines 
653 |a Financial analysis 
653 |a Bank technology 
653 |a Financial services 
653 |a Digital technology 
653 |a Vector quantization 
773 0 |t Informatica  |g vol. 49, no. 17 (Apr 2025), p. 105-119 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254147538/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254147538/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254147538/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch