Machine Learning-based Regression Analysis and Feature Ranking for Localization Error Prediction in Wireless Sensor Networks

Uloženo v:
Podrobná bibliografie
Vydáno v:Informatica vol. 49, no. 20 (May 2025), p. 27-41
Hlavní autor: Wang, Peng
Další autoři: Han, Qiuying, Zhang, Shaohui, Wu, Zhaodi
Vydáno:
Slovenian Society Informatika / Slovensko drustvo Informatika
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254147574
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/infv49120.8081  |2 doi 
035 |a 3254147574 
045 2 |b d20250501  |b d20250531 
084 |a 179436  |2 nlm 
100 1 |a Wang, Peng  |u School of Artificial Intelligence, Zhoukou Normal University 
245 1 |a Machine Learning-based Regression Analysis and Feature Ranking for Localization Error Prediction in Wireless Sensor Networks 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c May 2025 
513 |a Journal Article 
520 3 |a Wireless Sensor Networks (WSNs) localization is crucial for identifying the position of sensor nodes, as many applications, including environmental monitoring, target tracking, and disaster management, require accurate location information. The objective of this research is to conduct extensive data analytics using visualization techniques to explore key factors influencing localization error and to develop machine learning models for forecasting Average Localization Error (ALE) in WSNs. A dataset containing 107 records, sourced from Kaggle's online repository, was analyzed using eXtreme Gradient Boosting (XGB) for feature ranking to determine the most influential factors affecting ALE. Multiple regression models, including Support Vector Regression (SVR), Decision Tree (DT), K-Nearest Neighbors (KNN), and AdaBoost Regressor, were applied to predict ALE. The models were evaluated using R-squared (R2), Root Mean Square Error (RMSE), and computational efficiency. The results indicate that SVR achieved the highest accuracy with R2 = 0.99 and the lowest RMSE of 0.01, significantly outperforming the other models (KNN: R2 = 0.55, RMSE = 0.14; DT: R2 = 0.41, RMSE = 0.16; AdaBoost: R2 = 0.72, RMSE = 0.16). This study demonstrates that SVR is a highly effective model for ALE prediction, reinforcing the importance of feature ranking and selection in improving localization accuracy. The findings contribute to advancing machine learning-driven localization error prediction in WSNs and provide a foundation for further exploration of hybrid and deep learning-based models. 
653 |a Mean square errors 
653 |a Accuracy 
653 |a Datasets 
653 |a Environmental monitoring 
653 |a Optimization 
653 |a Wireless sensor networks 
653 |a Multiple regression models 
653 |a Measurement techniques 
653 |a Tracking 
653 |a Ranking 
653 |a Machine learning 
653 |a Localization 
653 |a Energy consumption 
653 |a Decision trees 
653 |a Efficiency 
653 |a Position sensing 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Root-mean-square errors 
653 |a Decision making 
653 |a Sensors 
653 |a Regression analysis 
653 |a Algorithms 
653 |a Deep learning 
700 1 |a Han, Qiuying  |u School of Computer Science and Technology, Zhoukou Normal University 
700 1 |a Zhang, Shaohui  |u School of Artificial Intelligence, Zhoukou Normal University 
700 1 |a Wu, Zhaodi  |u Network and Information Center, Guizhou Normal University 
773 0 |t Informatica  |g vol. 49, no. 20 (May 2025), p. 27-41 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254147574/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254147574/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254147574/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch