Research on the Distribution of Remaining Gas Based on the Dynamic Fine-Grained K-Means Recursive Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Chemistry and Technology of Fuels and Oils vol. 61, no. 1 (Mar 2025), p. 195
Autor principal: Zhao, Chunlan
Otros Autores: He, Xi, Guo, Ping, Jing, Jintao, Zheng, Wenjuan, Wu, Xiang
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254148925
003 UK-CbPIL
022 |a 0009-3092 
022 |a 1573-8310 
024 7 |a 10.1007/s10553-025-01853-8  |2 doi 
035 |a 3254148925 
045 2 |b d20250101  |b d20250228 
100 1 |a Zhao, Chunlan  |u Southwest Petroleum University, College of science, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828) 
245 1 |a Research on the Distribution of Remaining Gas Based on the Dynamic Fine-Grained K-Means Recursive Algorithm 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a Due to the poor physical properties of tight sandstone gas reservoirs and complex reservoir space, the development is difficult and the final recovery is low. The main reason is that the local enrichment of residual gas is difficult to be accurately described. In this paper, the high dimensional index system affecting residual gas was established, and the main controlling factors affecting residual gas were obtained through the dimensional reduction of machine learning. Firstly, two machine learning algorithms are used to identify the main factors affecting the remaining gas. Then use it as input to perform unsupervised learning on the grid using K-means and label it. Finally, by integrating the spatial coordinate parameters of the grids, setting thresholds, and dynamically recursively searching each grid, resulting in the distribution of remaining gas types for each layer. The results show that the main factors affecting the residual gas are reserve abundance, effective thickness and pressure. In addition, the first and second layers are dominated by high residual gas reservoirs, the third layer has more high residual gas reservoirs, the fourth and fifth layers are dominated by medium residual gas reservoirs, and the sixth layer has very little residual gas. 
651 4 |a China 
653 |a Sandstone 
653 |a Oil reserves 
653 |a Neural networks 
653 |a Unsupervised learning 
653 |a Classification 
653 |a Support vector machines 
653 |a Algorithms 
653 |a Reservoirs 
653 |a Physical properties 
653 |a Machine learning 
653 |a Residual gas 
653 |a Natural gas reserves 
653 |a Economic 
653 |a Environmental 
700 1 |a He, Xi  |u Southwest Petroleum University, College of Oil and Gas Engineering, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828) 
700 1 |a Guo, Ping  |u Southwest Petroleum University, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828); State Key Lab Of Oil And Gas Reservoir Geology And Exploitation, Chengdu, China (GRID:grid.486391.1) (ISNI:0000 0004 7884 684X) 
700 1 |a Jing, Jintao  |u Southwest Petroleum University, College of science, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828) 
700 1 |a Zheng, Wenjuan  |u Southwest Petroleum University, College of science, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828) 
700 1 |a Wu, Xiang  |u Southwest Petroleum University, College of science, Chengdu, China (GRID:grid.437806.e) (ISNI:0000 0004 0644 5828) 
773 0 |t Chemistry and Technology of Fuels and Oils  |g vol. 61, no. 1 (Mar 2025), p. 195 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254148925/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254148925/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254148925/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch