Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Analog Integrated Circuits and Signal Processing vol. 115, no. 3 (Jun 2023), p. 307
المؤلف الرئيسي: Uluslu, Ahmet
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3254233198
003 UK-CbPIL
022 |a 0925-1030 
022 |a 1573-1979 
024 7 |a 10.1007/s10470-023-02174-8  |2 doi 
035 |a 3254233198 
045 2 |b d20230601  |b d20230630 
100 1 |a Uluslu, Ahmet  |u Istanbul University-Cerrahpaşa, Department of Electronics and Automation, Istanbul, Turkey (GRID:grid.506076.2) (ISNI:0000 0004 1797 5496) 
245 1 |a Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem 
260 |b Springer Nature B.V.  |c Jun 2023 
513 |a Journal Article 
520 3 |a Here, optimization of a quadrafilar helical antenna is presented to compare the performances of objective function pairs adapted from mathematical models by using DEA with fixed weight objective function structure and SPEA2 with variable weight objective function structure from 2 different competitive multi-objective algorithms. The most important purpose in optimization problems is to find the result with the lowest cost. For this, the selection of the appropriate objective function pair is very important. The most important aim in this study is to determine the optimum objective function pair model. For this purpose, five different objective function models were derived by using nonlinear mathematical models. These objective functions are adapted from polynomial, power, exponential, gaussian and fourier mathematical models. In order to determine the most successful model without question, the objective functions adapted from the mathematical models are compared separately in both evolutionary algorithms by using different algorithm parameters and different weight coefficients. According to the results obtained, it is seen that the objective function adapted from the power mathematical model has the lowest cost. This proposed adaptation technique, which is the novelty of the study, is an efficient and reliable method to find the most appropriate objective function and the lowest cost result in optimization problems. It can also be quickly adapted to any optimization problem. 
653 |a Mathematical analysis 
653 |a Mathematical models 
653 |a Cost function 
653 |a Helical antennas 
653 |a Genetic algorithms 
653 |a Objective function 
653 |a Antennas 
653 |a Polynomials 
653 |a Optimization 
653 |a Algorithms 
653 |a Design 
653 |a Performance evaluation 
653 |a Optimization algorithms 
653 |a Evolutionary algorithms 
653 |a Economic 
773 0 |t Analog Integrated Circuits and Signal Processing  |g vol. 115, no. 3 (Jun 2023), p. 307 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254233198/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254233198/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254233198/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch