ST-GTNet: A Spatio-Temporal Graph Attention Network for Dynamic Airport Capacity Prediction

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Aerospace vol. 12, no. 9 (2025), p. 811-841
Príomhchruthaitheoir: Qian Pinzheng
Rannpháirtithe: Zhang, Jian, Zhang, Haiyan, Li Xunhao, Ouyang Jie
Foilsithe / Cruthaithe:
MDPI AG
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3254460291
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12090811  |2 doi 
035 |a 3254460291 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Qian Pinzheng  |u Jiangsu Key Laboratory of Urban ITS, Department of Intelligent Transportation and Spatial Informatics, School of Transportation, Southeast University, Nanjing 211189, China; 230228890@seu.edu.cn (P.Q.); 230229444@seu.edu.cn (H.Z.); lxhy919@seu.edu.cn (X.L.) 
245 1 |a ST-GTNet: A Spatio-Temporal Graph Attention Network for Dynamic Airport Capacity Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Dynamic evaluation of airport terminal capacity is critical for efficient operations, yet it remains challenging due to the complex interplay of spatial and temporal factors. Existing approaches often handle spatial connectivity and temporal fluctuations separately, limiting their predictive power under rapidly changing conditions. Here the ST-GTNet (Spatio-Temporal Graph Transformer Network) is presented, a novel deep learning model that integrates Graph Convolutional Networks (GCNs) with a Transformer architecture to simultaneously capture spatial interdependencies among airport gates and temporal patterns in operational data. To ensure interpretability and efficiency, a feature selection mechanism guided by XGBoost and SHAP (Shapley Additive Explanations) is incorporated to identify the most influential features. This unified spatio-temporal framework overcomes the limitations of conventional methods by learning spatial and temporal dynamics jointly, thereby enhancing the accuracy of dynamic capacity predictions. In a case study at a large international airport with a U-shaped corridor terminal, the ST-GTNet delivered robust and reliable capacity forecasts, validating its effectiveness in a complex real-world scenario. These findings highlight the potential of the ST-GTNet as a powerful tool for dynamic airport capacity evaluation and management. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Integer programming 
653 |a Airport capacity 
653 |a Artificial neural networks 
653 |a Airline scheduling 
653 |a Decision making 
653 |a Airport terminals 
653 |a Airports 
653 |a Feature selection 
653 |a Computer simulation 
653 |a Civil aviation 
653 |a Decision trees 
653 |a Deep learning 
653 |a Transportation terminals 
700 1 |a Zhang, Jian  |u Jiangsu Key Laboratory of Urban ITS, Department of Intelligent Transportation and Spatial Informatics, School of Transportation, Southeast University, Nanjing 211189, China; 230228890@seu.edu.cn (P.Q.); 230229444@seu.edu.cn (H.Z.); lxhy919@seu.edu.cn (X.L.) 
700 1 |a Zhang, Haiyan  |u Jiangsu Key Laboratory of Urban ITS, Department of Intelligent Transportation and Spatial Informatics, School of Transportation, Southeast University, Nanjing 211189, China; 230228890@seu.edu.cn (P.Q.); 230229444@seu.edu.cn (H.Z.); lxhy919@seu.edu.cn (X.L.) 
700 1 |a Li Xunhao  |u Jiangsu Key Laboratory of Urban ITS, Department of Intelligent Transportation and Spatial Informatics, School of Transportation, Southeast University, Nanjing 211189, China; 230228890@seu.edu.cn (P.Q.); 230229444@seu.edu.cn (H.Z.); lxhy919@seu.edu.cn (X.L.) 
700 1 |a Ouyang Jie  |u School of Transportation Science and Engineering, Civil Aviation University of China, Nanjing 211189, China; joyang@cauc.edu.cn 
773 0 |t Aerospace  |g vol. 12, no. 9 (2025), p. 811-841 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254460291/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254460291/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254460291/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch