Spatiotemporal Graph Convolutional Network-Based Long Short-Term Memory Model with A* Search Path Navigation and Explainable Artificial Intelligence for Carbon Monoxide Prediction in Northern Cape Province, South Africa

Gardado en:
Detalles Bibliográficos
Publicado en:Atmosphere vol. 16, no. 9 (2025), p. 1107-1136
Autor Principal: Agbehadji Israel Edem
Outros autores: Christiana, Obagbuwa Ibidun
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254466206
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16091107  |2 doi 
035 |a 3254466206 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Agbehadji Israel Edem  |u Centre for Global Change, Faculty of Natural and Applied Sciences, Sol Plaatje University, Kimberley 8301, South Africa 
245 1 |a Spatiotemporal Graph Convolutional Network-Based Long Short-Term Memory Model with A* Search Path Navigation and Explainable Artificial Intelligence for Carbon Monoxide Prediction in Northern Cape Province, South Africa 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Background: The emission of air pollutants into the atmosphere is a global issue as it contributes to global warming and climate-related issues. Human activities like the burning of fossil fuel influence changes in weather patterns—resulting in issues such as a rise in sea levels, among other things. Identifying road network routes within Northern Cape Province in South Africa that are less exposed to air pollutants like carbon monoxide is the issue this study seeks to address. Methods: The method used for our predictions is based on a graph convolutional network (GCN) and long short-term memory (LSTM). The GCN extracts geospatial characteristics, and the LSTM captures both nonlinear relationships and temporal dependencies in an air pollutant and meteorological dataset. Furthermore, an A* search strategy identifies the path from one location to another with the lowest carbon monoxide concentrations within a road network. The explainable artificial intelligence (xAI) technique is used to describe the nonlinear relationship between the target variable and features. Meteorological and air pollutant data in the form of statistical mean, minimum, and maximum values were leveraged, and a random sampling technique was utilized to fill the data gap to help train the predictive model (GCN-LSTM-A*). Results: The predictive model was evaluated with mean squared error (MSE) and root mean squared error (RMSE) values within two multi-time steps (8 and 16 h) with MSEs of 0.1648 and 0.1701, respectively. The LIME technique, which provides explanations of features, shows that Wind_speed and NO2 and NOx concentrations decreased the predicted CO, whereas PM2.5, PM10, relative humidity, and O3 increased the predicted CO of the route. 
651 4 |a Karoo 
651 4 |a South Africa 
653 |a Global warming 
653 |a Nitrogen dioxide 
653 |a Capes (landforms) 
653 |a Artificial neural networks 
653 |a Navigation 
653 |a Fossil fuels 
653 |a Vandalism 
653 |a Air pollution 
653 |a Sea level rise 
653 |a Long short-term memory 
653 |a Random sampling 
653 |a Sampling techniques 
653 |a Prediction models 
653 |a Relative humidity 
653 |a Cognition & reasoning 
653 |a Carbon monoxide 
653 |a Data integrity 
653 |a Air 
653 |a Search methods 
653 |a Statistical sampling 
653 |a Root-mean-square errors 
653 |a Particulate matter 
653 |a Artificial intelligence 
653 |a Nitrogen compounds 
653 |a Pollutants 
653 |a Relocation 
653 |a Deep learning 
653 |a Climate and human activity 
653 |a Trends 
653 |a Climate change 
653 |a Navigation systems 
653 |a Outdoor air quality 
653 |a Explainable artificial intelligence 
653 |a Machine learning 
653 |a Roads & highways 
653 |a Neural networks 
653 |a Weather patterns 
653 |a Literature reviews 
700 1 |a Christiana, Obagbuwa Ibidun  |u Department of Computer Science and Information Technology, Faculty of Natural and Applied Sciences, Sol Plaatje University, Kimberly 8301, South Africa; ibidun.obagbuwa@spu.ac.za 
773 0 |t Atmosphere  |g vol. 16, no. 9 (2025), p. 1107-1136 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254466206/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254466206/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254466206/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch