The Numerical Solution of Volterra Integral Equations

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms vol. 14, no. 9 (2025), p. 675-705
1. Verfasser: Junghanns, Peter
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254466408
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14090675  |2 doi 
035 |a 3254466408 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Junghanns, Peter 
245 1 |a The Numerical Solution of Volterra Integral Equations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recently we studied a collocation–quadrature method in weighted <inline-formula>L2</inline-formula> spaces as well as in the space of continuous functions for a Volterra-like integral equation of the form <inline-formula>u(x)−∫αx1h(x−αy)u(y)dy=f(x),0<x<1,</inline-formula> where <inline-formula>h(x)</inline-formula> (with a possible singularity at <inline-formula>x=0</inline-formula>) and <inline-formula>f(x)</inline-formula> are given (in general complex-valued) functions, and <inline-formula>α∈(0,1)</inline-formula> is a fixed parameter. Here, we want to investigate the same method for the case when <inline-formula>α=1.</inline-formula> More precisely, we consider (in general weakly singular) Volterra integral equations of the form <inline-formula>u(x)−∫0xh(x,y)(x−y)κu(y)dy=f(x),0<x<1,</inline-formula> where <inline-formula>κ>−1</inline-formula>, and <inline-formula>h:D⟶C</inline-formula> is a continuous function, <inline-formula>D=(x,y)∈R2:0<y<x<1.</inline-formula> The passage from <inline-formula>0<α<1</inline-formula> to <inline-formula>α=1</inline-formula> and the consideration of more general kernel functions <inline-formula>h(x,y)</inline-formula> make the studies more involved. Moreover, we enhance the family of interpolation operators defining the approximating operators, and, finally, we ask if, in comparison to collocation–quadrature methods, the application of the Nyström method together with the theory of collectively compact operator sequences is possible. 
653 |a Mathematical functions 
653 |a Approximation 
653 |a Singularity (mathematics) 
653 |a Banach spaces 
653 |a Integral equations 
653 |a Kernel functions 
653 |a Continuity (mathematics) 
653 |a Operators (mathematics) 
653 |a Quadratures 
653 |a Collocation 
653 |a Linear operators 
653 |a Volterra integral equations 
653 |a Collocation methods 
773 0 |t Axioms  |g vol. 14, no. 9 (2025), p. 675-705 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254466408/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254466408/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254466408/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch