Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Atmosphere vol. 16, no. 9 (2025), p. 1109-1126
Hoofdauteur: Liu, Yulong
Andere auteurs: Liao Meicheng, Liu, Jiacheng, Cheng, Zhen
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3254466741
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16091109  |2 doi 
035 |a 3254466741 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Liu, Yulong 
245 1 |a Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Gas-phase chemistry has been identified as a major computational bottleneck in both the forward and adjoint modes of chemical transport models (CTMs). Although previous studies have demonstrated the potential of deep learning models to simulate and accelerate this process, few studies have examined the applicability and performance of these models in adjoint sensitivity analysis. In this study, a deep learning emulator for gas-phase chemistry is developed and trained on a diverse set of forward-mode simulations from the Community Multiscale Air Quality (CMAQ) model. The emulator employs a residual neural network (ResNet) architecture referred to as FiLM-ResNet, which integrates Feature-wise Linear Modulation (FiLM) layers to explicitly account for photochemical and non-photochemical conditions. Validation within a single timestep indicates that the emulator accurately predicts concentration changes for 74% of gas-phase species with coefficient of determination (R2) exceeding 0.999. After embedding the emulator into the CTM, multi-timestep simulation over one week shows close agreement with the numerical model. For the adjoint mode, we compute the sensitivities of ozone (O3) with respect to O3, nitric oxide (NO), nitrogen dioxide (NO2), hydroxyl radical (OH) and isoprene (ISOP) using automatic differentiation, with the emulator-based adjoint results achieving a maximum R2 of 0.995 in single timestep evaluations compared to the numerical adjoint sensitivities. A 24 h adjoint simulation reveals that the emulator maintains spatially consistent adjoint sensitivity distributions compared to the numerical model across most grid cells. In terms of computational efficiency, the emulator achieves speed-ups of 80×–130× in the forward mode and 45×–102× in the adjoint mode, depending on whether inference is executed on Central Processing Unit (CPU) or Graphics Processing Unit (GPU). These findings demonstrate that, once the emulator is accurately trained to reproduce forward-mode gas-phase chemistry, it can be effectively applied in adjoint sensitivity analysis. This approach offers a promising alternative approach to numerical adjoint frameworks in CTMs. 
651 4 |a China 
653 |a Air quality 
653 |a Nitric oxide 
653 |a Datasets 
653 |a Sensitivity analysis 
653 |a Nitrogen dioxide 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Chemistry 
653 |a Computer applications 
653 |a Photochemicals 
653 |a Distance learning 
653 |a Simulation 
653 |a Ozone 
653 |a Emulators 
653 |a Numerical models 
653 |a Isoprene 
653 |a Graphics processing units 
653 |a Chemical transport 
653 |a Chemical bonds 
653 |a Hydroxyl radicals 
653 |a Central processing units--CPUs 
653 |a Accuracy 
653 |a Deep learning 
653 |a Atmospheric chemistry 
653 |a Data assimilation 
653 |a Photochemistry 
653 |a Machine learning 
653 |a Graphics 
653 |a Gases 
653 |a Mathematical models 
653 |a Air quality models 
653 |a Ordinary differential equations 
653 |a Embedding 
700 1 |a Liao Meicheng 
700 1 |a Liu, Jiacheng 
700 1 |a Cheng, Zhen 
773 0 |t Atmosphere  |g vol. 16, no. 9 (2025), p. 1109-1126 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254466741/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254466741/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254466741/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch