MITM- and DoS-Resistant PUF Authentication for Industrial WSNs via Sensor-Initiated Registration

Guardado en:
Detalles Bibliográficos
Publicado en:Computers vol. 14, no. 9 (2025), p. 347-379
Autor principal: Alyanbaawi Ashraf
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Industrial Wireless Sensor Networks (IWSNs) play a critical role in Industry 4.0 environments, enabling real-time monitoring and control of industrial processes. However, existing lightweight authentication protocols for IWSNs remain vulnerable to sophisticated security attacks because of inadequate initial authentication phases. This study presents a security analysis of Gope et al.’s PUF-based authentication protocol for IWSNs and identifies critical vulnerabilities that enable man-in-the-middle (MITM) and denial-of-service (DoS) attacks. We demonstrate that Gope et al.’s protocol is susceptible to MITM attacks during both authentication and Secure Periodical Data Collection (SPDC), allowing adversaries to derive session keys and compromise communication confidentiality. Our analysis reveals that the sensor registration phase of the protocol lacks proper authentication mechanisms, enabling attackers to perform unauthorized PUF queries and subsequently mount successful attacks. To address these vulnerabilities, we propose an enhanced authentication scheme that introduces a sensor-initiated registration process. In our improved protocol, sensor nodes generate and control PUF challenges rather than passively responding to gateway requests. This modification prevents unauthorized PUF queries while preserving the lightweight characteristics essential for resource-constrained IWSN deployments. Security analysis demonstrates that our enhanced scheme effectively mitigates the identified MITM and DoS attacks without introducing significant computational or communication overhead. The proposed modifications maintain compatibility with the existing IWSN infrastructure while strengthening the overall security posture. Comparative analysis shows that our solution addresses the security weaknesses of the original protocol while preserving its practical advantages for industrial use. The enhanced protocol provides a practical and secure solution for real-time data access in IWSNs, making it suitable for deployment in mission-critical industrial environments where both security and efficiency are paramount.
ISSN:2073-431X
DOI:10.3390/computers14090347
Fuente:Advanced Technologies & Aerospace Database