Lyapunov-Based Deep Deterministic Policy Gradient for Energy-Efficient Task Offloading in UAV-Assisted MEC

Guardat en:
Dades bibliogràfiques
Publicat a:Drones vol. 9, no. 9 (2025), p. 653-683
Autor principal: Liu, Jianhua
Altres autors: Zhang, Xudong, Zhou, Haitao, Xia, Lei, Li, Huiru, Wang, Xiaofan
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3254503202
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9090653  |2 doi 
035 |a 3254503202 
045 2 |b d20250101  |b d20251231 
100 1 |a Liu, Jianhua  |u Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan 618307, China; jianhuacafuc13@cafuc.edu.cn (J.L.); xudonggood@cafuc.edu.cn (X.Z.); zhouhaitao@cafuc.edu.cn (H.Z.); leixia@cafuc.edu.cn (X.L.) 
245 1 |a Lyapunov-Based Deep Deterministic Policy Gradient for Energy-Efficient Task Offloading in UAV-Assisted MEC 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The demand for low-latency computing from the Internet of Things (IoT) and emerging applications challenges traditional cloud computing. Mobile Edge Computing (MEC) offers a solution by deploying resources at the network edge, yet terrestrial deployments face limitations. Unmanned Aerial Vehicles (UAVs), leveraging their high mobility and flexibility, provide dynamic computation offloading for User Equipments (UEs), especially in areas with poor infrastructure or network congestion. However, UAV-assisted MEC confronts significant challenges, including time-varying wireless channels and the inherent energy constraints of UAVs. We put forward the Lyapunov-based Deep Deterministic Policy Gradient (LyDDPG), a novel computation offloading algorithm. This algorithm innovatively integrates Lyapunov optimization with the Deep Deterministic Policy Gradient (DDPG) method. Lyapunov optimization transforms the long-term, stochastic energy minimization problem into a series of tractable, per-timeslot deterministic subproblems. Subsequently, DDPG is utilized to solve these subproblems by learning a model-free policy through environmental interaction. This policy maps system states to optimal continuous offloading and resource allocation decisions, aiming to minimize the Lyapunov-derived “drift-plus-penalty” term. The simulation outcomes indicate that, compared to several baseline and leading algorithms, the proposed LyDDPG algorithm reduces the total system energy consumption by at least 16% while simultaneously maintaining low task latency and ensuring system stability. 
653 |a Control theory 
653 |a Robust control 
653 |a Internet of Things 
653 |a Optimization 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Mobile computing 
653 |a Unmanned aerial vehicles 
653 |a Systems stability 
653 |a Queuing theory 
653 |a Energy consumption 
653 |a Mathematical programming 
653 |a Cloud computing 
653 |a Network latency 
653 |a Computation offloading 
653 |a Algorithms 
653 |a Quality of service 
653 |a Linear programming 
653 |a Paradigms 
653 |a Resource management 
700 1 |a Zhang, Xudong  |u Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan 618307, China; jianhuacafuc13@cafuc.edu.cn (J.L.); xudonggood@cafuc.edu.cn (X.Z.); zhouhaitao@cafuc.edu.cn (H.Z.); leixia@cafuc.edu.cn (X.L.) 
700 1 |a Zhou, Haitao  |u Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan 618307, China; jianhuacafuc13@cafuc.edu.cn (J.L.); xudonggood@cafuc.edu.cn (X.Z.); zhouhaitao@cafuc.edu.cn (H.Z.); leixia@cafuc.edu.cn (X.L.) 
700 1 |a Xia, Lei  |u Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan 618307, China; jianhuacafuc13@cafuc.edu.cn (J.L.); xudonggood@cafuc.edu.cn (X.Z.); zhouhaitao@cafuc.edu.cn (H.Z.); leixia@cafuc.edu.cn (X.L.) 
700 1 |a Li, Huiru  |u Flight Training Center of Civil Aviation Flight University of China, Guanghan 618307, China; lihuiru@cafuc.edu.cn 
700 1 |a Wang, Xiaofan  |u CAAC Key Laboratory of General Aviation Operation (Civil Aviation Management Institute of China), Beijing 100102, China 
773 0 |t Drones  |g vol. 9, no. 9 (2025), p. 653-683 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254503202/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254503202/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254503202/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch