Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things

Guardado en:
Detalles Bibliográficos
Publicado en:Entropy vol. 27, no. 9 (2025), p. 927-947
Autor principal: Tang, Long
Otros Autores: Li Fangyan, Yu Zichao, Zeng Haiyong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254508944
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27090927  |2 doi 
035 |a 3254508944 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Tang, Long  |u Guangxi Key Laboratory of Braininspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541001, China; 17823537490@163.com (L.T.); lifangyan@mailbox.gxnu.edu.cn (F.L.) 
245 1 |a Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér–Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels. 
653 |a Lower bounds 
653 |a Accuracy 
653 |a Regularization 
653 |a Cramer-Rao bounds 
653 |a Random variables 
653 |a Parameter estimation 
653 |a Communication 
653 |a Industrial Internet of Things 
653 |a Parameter sensitivity 
653 |a Sensors 
653 |a Network latency 
653 |a Noise levels 
653 |a Parameter robustness 
653 |a Algorithms 
653 |a Energy efficiency 
653 |a Maximum likelihood estimation 
653 |a Time synchronization 
653 |a Energy consumption 
653 |a Central limit theorem 
653 |a Robustness 
700 1 |a Li Fangyan  |u Guangxi Key Laboratory of Braininspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541001, China; 17823537490@163.com (L.T.); lifangyan@mailbox.gxnu.edu.cn (F.L.) 
700 1 |a Yu Zichao  |u Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230022, China; zichaoyu@mail.ustc.edu.cn 
700 1 |a Zeng Haiyong  |u Guangxi Key Laboratory of Braininspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541001, China; 17823537490@163.com (L.T.); lifangyan@mailbox.gxnu.edu.cn (F.L.) 
773 0 |t Entropy  |g vol. 27, no. 9 (2025), p. 927-947 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254508944/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254508944/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254508944/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch