Novel Encoder–Decoder Architecture with Attention Mechanisms for Satellite-Based Environmental Forecasting in Smart City Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Future Internet vol. 17, no. 9 (2025), p. 380-412
Autor principal: Panhwar Kalsoom
Otros Autores: Soomro Bushra Naz, Bhatti Sania, Jaskani Fawwad Hassan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254514699
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17090380  |2 doi 
035 |a 3254514699 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Panhwar Kalsoom  |u Department of Computer Systems Engineering, University of Sindh, Jamshoro 76080, Pakistan 
245 1 |a Novel Encoder–Decoder Architecture with Attention Mechanisms for Satellite-Based Environmental Forecasting in Smart City Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Desertification poses critical threats to agricultural productivity and socio-economic stability, particularly in vulnerable regions like Thatta and Badin districts of Sindh, Pakistan. Traditional monitoring methods lack the accuracy and temporal resolution needed for effective early warning systems. This study presents a novel Spatio-Temporal Desertification Predictor (STDP) framework that integrates deep learning with next-generation satellite imaging for time-series desertification forecasting. The proposed encoder–decoder architecture combines Convolutional Neural Networks (CNNs) for spatial feature extraction from high-resolution satellite imagery with modified Long Short-Term Memory (LSTM) networks enhanced by multi-head attention to capture temporal dependencies. Environmental variables are fused through an adaptive data integration layer, and hyperparameter optimization is employed to enhance model performance for edge computing deployment. Experimental validation on a 15-year satellite dataset (2010–2024) demonstrates superior performance with MSE = 0.018, MAE = 0.079, and <inline-formula>R2=0.94</inline-formula>, outperforming traditional CNN-only, LSTM-only, and hybrid baselines by 15–20% in prediction accuracy. The framework forecasts desertification trends through 2030, providing actionable signals for environmental management and policy-making. This work advances the integration of AI with satellite-based Earth observation, offering a scalable path for real-time environmental monitoring in IoT and edge computing infrastructures. 
651 4 |a Pakistan 
651 4 |a China 
653 |a Accuracy 
653 |a Temporal resolution 
653 |a Desertification 
653 |a Internet 
653 |a Deep learning 
653 |a Image resolution 
653 |a Computer architecture 
653 |a Early warning systems 
653 |a Environmental monitoring 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Satellite imagery 
653 |a Edge computing 
653 |a Architecture 
653 |a Data integration 
653 |a Machine learning 
653 |a Monitoring systems 
653 |a Coders 
653 |a Smart cities 
653 |a Environmental management 
653 |a Vegetation 
653 |a Remote sensing 
653 |a Earth observations (from space) 
653 |a Artificial intelligence 
653 |a Infrastructure 
653 |a Design 
653 |a Algorithms 
653 |a Literature reviews 
653 |a Satellite observation 
653 |a Real time 
653 |a Cloud computing 
653 |a Forecasting 
700 1 |a Soomro Bushra Naz  |u Department of Computer Systems Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan 
700 1 |a Bhatti Sania  |u Department of Software Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan; sania.bhatti@faculty.muet.edu.pk 
700 1 |a Jaskani Fawwad Hassan  |u Department of Computer Systems Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; favadhassanjaskani@gmail.com 
773 0 |t Future Internet  |g vol. 17, no. 9 (2025), p. 380-412 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254514699/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254514699/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254514699/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch