A Game Theoretic Approach for D2D Assisted Uncoded Caching in IoT Networks

Gardado en:
Detalles Bibliográficos
Publicado en:Future Internet vol. 17, no. 9 (2025), p. 423-447
Autor Principal: Ren Jiajie
Outros autores: Guo, Chang
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254515654
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17090423  |2 doi 
035 |a 3254515654 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Ren Jiajie  |u School of Artificial Intelligence and Information Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 
245 1 |a A Game Theoretic Approach for D2D Assisted Uncoded Caching in IoT Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Content caching and exchange through device-to-device (D2D) communications can offload data from the centralized base station and improve the quality of users’ experience. However, existing studies often overlook the selfish nature of user equipment (UE) and the heterogeneity of content preferences, which limits their practical applicability. In this paper, we propose a novel incentive-driven uncoded caching framework modeled as a Stackelberg game between a base station (BS) and cache-enabled UEs. The BS acts as the leader by determining the unit incentive reward, while UEs jointly optimize their caching strategies as followers. The particular challenge in our formulation is that the uncoded caching decisions make the UEs’ total utility maximization problem into a non-convex integer programming problem. To address this, we map the UEs’ total utility maximization problem into a potential sub-game and design a potential game-based distributed caching (PGDC) algorithm that guarantees convergence to the optimal joint caching strategy. Building on this, we further develop a dynamic iterative algorithm to derive the Stackelberg equilibrium by jointly optimizing the BS’s cost and the total utility of UEs. The simulation results confirm the existence of the Stackelberg Equilibrium and demonstrate that the proposed PGDC algorithm significantly outperforms benchmark caching schemes. 
653 |a Iterative algorithms 
653 |a Game theory 
653 |a Utility theory 
653 |a Caching 
653 |a Integer programming 
653 |a Costs 
653 |a Optimization 
653 |a Equilibrium 
653 |a Probability 
653 |a Maximization 
653 |a Algorithms 
653 |a Utility functions 
653 |a Internet of Things 
653 |a Heterogeneity 
700 1 |a Guo, Chang  |u College of Information, Mechanical, and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China; guochang@shnu.edu.cn 
773 0 |t Future Internet  |g vol. 17, no. 9 (2025), p. 423-447 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254515654/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254515654/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254515654/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch