Optimizing Red Vinasse-Blue Round Scad Processing Using Integrated Dimensionality Reduction and RSM: Effects on Lipid Storage Stability
Guardat en:
| Publicat a: | Foods vol. 14, no. 18 (2025), p. 3215-3243 |
|---|---|
| Autor principal: | |
| Altres autors: | , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3254516084 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2304-8158 | ||
| 024 | 7 | |a 10.3390/foods14183215 |2 doi | |
| 035 | |a 3254516084 | ||
| 045 | 2 | |b d20250915 |b d20250930 | |
| 084 | |a 231462 |2 nlm | ||
| 100 | 1 | |a Xue Shan |u College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, China; lbh30@mnnu.edu.cn (B.L.); lgj33@mnnu.edu.cn (G.L.) | |
| 245 | 1 | |a Optimizing Red Vinasse-Blue Round Scad Processing Using Integrated Dimensionality Reduction and RSM: Effects on Lipid Storage Stability | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This study pioneered an intelligent process optimization framework integrating dimensionality reduction and Box–Behnken Design response surface methodology (RSM) with MATLAB R2021b(v9.11) analytics, to advance the development of functional foods from red vinasse-blue round scad. The comprehensive nutraceutical stability assessment for key functional lipids during 4 °C storage were established by systematically evaluating microwave, boiling, and foil-baking processing. The results of intelligent processing optimization showed that the optimal parameters (red vinasse addition: 2.8 g/g; processing temperature: 4 °C; processing time: 10 h) maximized the composite quality score Y (50% texture + 50% sensory), validated by MATLAB R2021b(v9.11) to achieve near-theoretical maxima. The results of functional lipid stability showed that total fat decreased significantly (p < 0.05), with foil-baking showing the highest loss. Partial least squares regression (PLSR) analysis revealed critical degradation of nutraceutical lipids (C20:5n-3, C22:6n-3) and an increase in saturated fats (p < 0.05), where boiling induced the most severe fatty acid alterations. Microwave processing accelerated lipid oxidation (highest TBARS, p < 0.05), compromising lipid bioactivity. The framework of red vinasse biosynthesis technology enabled precise parameter optimization, and enhanced functional component retention in underutilized fish species. This work provided a theoretical and technical foundation for intelligent manufacturing of lipid-stable nutraceuticals, positioning red vinasse—a model biosynthesis technology output—as a key ingredient for next-generation functional foods. | |
| 651 | 4 | |a Fujian China | |
| 651 | 4 | |a China | |
| 653 | |a Biosynthesis | ||
| 653 | |a Functional foods & nutraceuticals | ||
| 653 | |a Food | ||
| 653 | |a Cooking | ||
| 653 | |a Matlab | ||
| 653 | |a Biological activity | ||
| 653 | |a Least squares method | ||
| 653 | |a Response surface methodology | ||
| 653 | |a Oxidation | ||
| 653 | |a Lipid peroxidation | ||
| 653 | |a Lipids | ||
| 653 | |a Research & development--R&D | ||
| 653 | |a Mackerel | ||
| 653 | |a Boiling | ||
| 653 | |a Food quality | ||
| 653 | |a Influence | ||
| 653 | |a Intelligent manufacturing systems | ||
| 653 | |a Fermentation | ||
| 653 | |a Storage stability | ||
| 653 | |a Raw materials | ||
| 653 | |a Meat | ||
| 653 | |a Baking | ||
| 653 | |a Temperature | ||
| 653 | |a Vinasse | ||
| 653 | |a Optimization | ||
| 653 | |a Rice | ||
| 653 | |a Methods | ||
| 653 | |a Parameters | ||
| 700 | 1 | |a Liu Bohu |u College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, China; lbh30@mnnu.edu.cn (B.L.); lgj33@mnnu.edu.cn (G.L.) | |
| 700 | 1 | |a Lan Guojin |u College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, China; lbh30@mnnu.edu.cn (B.L.); lgj33@mnnu.edu.cn (G.L.) | |
| 700 | 1 | |a Liu, Jia |u Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; mcgrady456@163.com | |
| 773 | 0 | |t Foods |g vol. 14, no. 18 (2025), p. 3215-3243 | |
| 786 | 0 | |d ProQuest |t Agriculture Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3254516084/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3254516084/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3254516084/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch |