Research on Two-Dimensional Linear Canonical Transformation Series and Its Applications

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and Fractional vol. 9, no. 9 (2025), p. 596-617
1. Verfasser: Zhao Weikang
Weitere Verfasser: Luo Huibin, Zhang, Guifang, KinTak, U
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254516230
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9090596  |2 doi 
035 |a 3254516230 
045 2 |b d20250101  |b d20251231 
100 1 |a Zhao Weikang  |u School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China; zhaowk0903@163.com 
245 1 |a Research on Two-Dimensional Linear Canonical Transformation Series and Its Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In light of the computational efficiency bottleneck and inadequate regional feature representation in traditional global data approximation methods, this paper introduces the concept of non-uniform partition to transform global continuous approximation into multi-region piecewise approximation. Additionally, we propose an image representation algorithm based on linear canonical transformation and non-uniform partitioning, which enables the regional representation of sub-signal features while reducing computational complexity. The algorithm first demonstrates that the two-dimensional linear canonical transformation series has a least squares solution within each region. Then, it adopts the maximum likelihood estimation method and the scale transformation characteristics to achieve conversion between the nonlinear and linear expressions of the two-dimensional linear canonical transformation series. It then uses the least squares method and the recursive method to convert the image information into mathematical expressions, realize image vectorization, and solve the approximation coefficients in each region more quickly. The proposed algorithm better represents complex image texture areas while reducing image quality loss, effectively retains high-frequency details, and improves the quality of reconstructed images. 
653 |a Transformations (mathematics) 
653 |a Principles 
653 |a Mathematical analysis 
653 |a Image reconstruction 
653 |a Fourier transforms 
653 |a Signal processing 
653 |a Least squares method 
653 |a Decomposition 
653 |a Approximation 
653 |a Algorithms 
653 |a Maximum likelihood estimation 
653 |a Algebra 
653 |a Image quality 
653 |a Complexity 
653 |a Data compression 
653 |a Cognition & reasoning 
653 |a Representations 
653 |a Recursive methods 
700 1 |a Luo Huibin  |u Greater Bay Area Innovation Institute, Beijing Institute of Technology, Zhuhai 519088, China; zhbitluo@163.com 
700 1 |a Zhang, Guifang  |u School of Computing and Artificial Intelligence, Jiangxi University of Finance and Economics, Nanchang 330013, China 
700 1 |a KinTak, U  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China 
773 0 |t Fractal and Fractional  |g vol. 9, no. 9 (2025), p. 596-617 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254516230/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254516230/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254516230/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch