MARC

LEADER 00000nab a2200000uu 4500
001 3254539454
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16090735  |2 doi 
035 |a 3254539454 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Kramer, Elena  |u Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel; elenak@braude.ac.il (E.K.); lembergdan@braude.ac.il (D.L.) 
245 1 |a Integrating AI with Meta-Language: An Interdisciplinary Framework for Classifying Concepts in Mathematics and Computer Science 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Providing students with effective learning resources is essential for improving educational outcomes—especially in complex and conceptually diverse fields such as Mathematics and Computer Science. To better understand how these subjects are communicated, this study investigates the linguistic structures embedded in academic texts from selected subfields within both disciplines. In particular, we focus on meta-languages—the linguistic tools used to express definitions, axioms, intuitions, and heuristics within a discipline. The primary objective of this research is to identify which subfields of Mathematics and Computer Science share similar meta-languages. Identifying such correspondences may enable the rephrasing of content from less familiar subfields using styles that students already recognize from more familiar areas, thereby enhancing accessibility and comprehension. To pursue this aim, we compiled text corpora from multiple subfields across both disciplines. We compared their meta-languages using a combination of supervised (Neural Network) and unsupervised (clustering) learning methods. Specifically, we applied several clustering algorithms—K-means, Partitioning around Medoids (PAM), Density-Based Clustering, and Gaussian Mixture Models—to analyze inter-discipline similarities. To validate the resulting classifications, we used XLNet, a deep learning model known for its sensitivity to linguistic patterns. The model achieved an accuracy of 78% and an F1-score of 0.944. Our findings show that subfields can be meaningfully grouped based on meta-language similarity, offering valuable insights for tailoring educational content more effectively. To further verify these groupings and explore their pedagogical relevance, we conducted both quantitative and qualitative research involving student participation. This paper presents findings from the qualitative component—namely, a content analysis of semi-structured interviews with software engineering students and lecturers. 
653 |a Object oriented programming 
653 |a Problem solving 
653 |a Language 
653 |a Qualitative research 
653 |a Students 
653 |a Comprehension 
653 |a Classification 
653 |a Computer science 
653 |a Language patterns 
653 |a Deep learning 
653 |a Data mining 
653 |a Languages 
653 |a Instructional design 
653 |a Combinatorics 
653 |a Axioms 
653 |a Content analysis 
653 |a STEM education 
653 |a Mathematics 
653 |a Clustering 
653 |a Machine learning 
653 |a Education 
653 |a Metalanguage 
653 |a Cognition & reasoning 
653 |a Linear algebra 
653 |a Linguistics 
653 |a Qualitative analysis 
653 |a Probabilistic models 
653 |a Neural networks 
653 |a Computer mediated communication 
653 |a Learning outcomes 
653 |a Hypotheses 
653 |a Logic 
653 |a Digital Age 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Set theory 
653 |a Software engineering 
653 |a Student participation 
653 |a Models 
653 |a Definitions 
653 |a Computers 
653 |a Academic disciplines 
653 |a Learning 
653 |a Heuristic 
653 |a Concepts 
653 |a Access 
653 |a Interdisciplinary aspects 
653 |a Learning resources 
700 1 |a Lamberg, Dan  |u Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel; elenak@braude.ac.il (E.K.); lembergdan@braude.ac.il (D.L.) 
700 1 |a Georgescu Mircea  |u Department of Economical Informatics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; mirceag@uaic.ro 
700 1 |a Weiss Cohen Miri  |u Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel; elenak@braude.ac.il (E.K.); lembergdan@braude.ac.il (D.L.) 
773 0 |t Information  |g vol. 16, no. 9 (2025), p. 735-761 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254539454/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254539454/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254539454/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch