Recursive Queried Frequent Patterns Algorithm: Determining Frequent Pattern Sets from Database

Guardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 9 (2025), p. 746-771
Autor principal: Khan, Ishtiyaq Ahmad
Otros Autores: Hsin-Yuan, Chen, Sharma Shamneesh, Sharma, Chetan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254539766
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16090746  |2 doi 
035 |a 3254539766 
045 2 |b d20250901  |b d20250930 
084 |a 231474  |2 nlm 
100 1 |a Khan, Ishtiyaq Ahmad  |u Academic Delivery and Student Success, upGrad Education Private Limited, Bangalore 560071, Karnataka, India 
245 1 |a Recursive Queried Frequent Patterns Algorithm: Determining Frequent Pattern Sets from Database 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Frequent pattern mining is a fundamental method for Data Mining, applicable in market basket analysis, recommendation systems, and academic analytics. Widely adopted and foundational algorithms such as Apriori and FP-Growth, which represent the standard approaches in frequent pattern mining, face limitations related to candidate set generation and memory usage, especially when applied to extensive relational datasets. This work presents the Recursive Queried Frequent Patterns (RQFP) algorithm, an SQL-based approach that utilizes recursive queries on relational Mining Tables to detect frequent itemsets without the need for explicit candidate development. The algorithm was implemented using a Microsoft SQL Server and demonstrated through a custom-developed C# web application interface. RQFP facilitates easy integration with database systems and enhances result interpretability. Comparative analyses of Apriori and FP-Growth on an academic dataset reveal competitive efficacy, accompanied with diminished memory requirements and enhanced clarity in pattern extraction. The paper further contextualizes RQFP using benchmark datasets from the previous literature and delineates a roadmap for future evaluations in healthcare and retail data. The existing implementation is educational, although the technique demonstrates the potential for scalable, database-native pattern mining. 
653 |a Datasets 
653 |a Data mining 
653 |a Recommender systems 
653 |a Applications programs 
653 |a Pattern analysis 
653 |a Databases 
653 |a Market positioning 
653 |a Algorithms 
653 |a Data science 
653 |a Product development 
653 |a Query languages 
700 1 |a Hsin-Yuan, Chen  |u Center for Digital Technology Innovation and Entrepreneurship, Institute of Wenzhou, Zhejiang University, Wenzhou 325000, China 
700 1 |a Sharma Shamneesh  |u Customer Success and Quality Control, byteXL TechEd Private Limited, Hyderabad 500081, Telangana, India 
700 1 |a Sharma, Chetan  |u PW-Institute of Innovation, PhysicsWallah Limited, Lucknow 226030, Uttar Pradesh, India 
773 0 |t Information  |g vol. 16, no. 9 (2025), p. 746-771 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254539766/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254539766/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254539766/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch