Exploring Sign Language Dataset Augmentation with Generative Artificial Intelligence Videos: A Case Study Using Adobe Firefly-Generated American Sign Language Data

Guardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 9 (2025), p. 799-817
Autor principal: Bercaru Valentin
Otros Autores: Popescu Nirvana
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254540428
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16090799  |2 doi 
035 |a 3254540428 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Bercaru Valentin 
245 1 |a Exploring Sign Language Dataset Augmentation with Generative Artificial Intelligence Videos: A Case Study Using Adobe Firefly-Generated American Sign Language Data 
260 |b MDPI AG  |c 2025 
513 |a Case Study Journal Article 
520 3 |a Currently, high quality datasets focused on Sign Language Recognition are either private, proprietary or difficult to obtain due to costs. Therefore, we aim to mitigate this problem by augmenting a publicly available dataset with artificially generated data in order to enrich and obtain a more diverse dataset. The performance of Sign Language Recognition (SLR) systems is highly dependent on the quality and diversity of training datasets. However, acquiring large-scale and well-annotated sign language video data remains a significant challenge. This experiment explores the use of Generative Artificial Intelligence (GenAI), specifically Adobe Firefly, to create synthetic video data for American Sign Language (ASL) fingerspelling. Thirteen letters out of 26 were selected for generation, and short videos representing each sign were synthesized and processed into static frames. These synthetic frames replaced approximately 7.5% of the original dataset and were integrated into the training data of a publicly available Convolutional Neural Network (CNN) model. After retraining the model with the augmented dataset, the accuracy did not drop. Moreover, the validation accuracy was approximately the same. The resulting model achieved a maximum accuracy of 98.04%. While the performance gain was limited (less than 1%), the approach illustrates the feasibility of using GenAI tools to generate training data and supports further research into data augmentation for low-resource SLR tasks. 
653 |a Machine learning 
653 |a Datasets 
653 |a Data augmentation 
653 |a Accuracy 
653 |a Deep learning 
653 |a Sign language 
653 |a Frames (data processing) 
653 |a Computer vision 
653 |a Video recordings 
653 |a Recognition 
653 |a Artificial neural networks 
653 |a Generative artificial intelligence 
653 |a Support vector machines 
653 |a Video data 
653 |a Engineering 
653 |a Case studies 
700 1 |a Popescu Nirvana 
773 0 |t Information  |g vol. 16, no. 9 (2025), p. 799-817 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254540428/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254540428/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254540428/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch