A Hybrid Framework for the Sensitivity Analysis of Software-Defined Networking Performance Metrics Using Design of Experiments and Machine Learning Techniques

Guardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 9 (2025), p. 783-821
Autor principal: Chekwube, Ezechi
Otros Autores: Akinsolu, Mobayode O, Wilson, Sakpere, Sangodoyin, Abimbola O, Uyoata, Uyoata E, Owusu-Nyarko Isaac, Akinsolu, Folahanmi T
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254540433
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16090783  |2 doi 
035 |a 3254540433 
045 2 |b d20250901  |b d20250930 
084 |a 231474  |2 nlm 
100 1 |a Chekwube, Ezechi  |u Faculty of Natural and Applied Sciences, Lead City University, Ibadan 200255, Oyo State, Nigeria; chekwube.ezechi@lcu.edu.ng (C.E.); sakpere.wilson@lcu.edu.ng (W.S.); asangodoyin@lincoln.ac.uk (A.O.S.); akinsolu.folahanmi@lcu.edu.ng (F.T.A.) 
245 1 |a A Hybrid Framework for the Sensitivity Analysis of Software-Defined Networking Performance Metrics Using Design of Experiments and Machine Learning Techniques 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Software-defined networking (SDN) is a transformative approach for managing modern network architectures, particularly in Internet-of-Things (IoT) applications. However, ensuring the optimal SDN performance and security often needs a robust sensitivity analysis (SA). To complement existing SA methods, this study proposes a new SA framework that integrates design of experiments (DOE) and machine-learning (ML) techniques. Although existing SA methods have been shown to be effective and scalable, most of these methods have yet to hybridize anomaly detection and classification (ADC) and data augmentation into a single, unified framework. To fill this gap, a targeted application of well-established existing techniques is proposed. This is achieved by hybridizing these existing techniques to undertake a more robust SA of a typified SDN-reliant IoT network. The proposed hybrid framework combines Latin hypercube sampling (LHS)-based DOE and generative adversarial network (GAN)-driven data augmentation to improve SA and support ADC in SDN-reliant IoT networks. Hence, it is called DOE-GAN-SA. In DOE-GAN-SA, LHS is used to ensure uniform parameter sampling, while GAN is used to generate synthetic data to augment data derived from typified real-world SDN-reliant IoT network scenarios. DOE-GAN-SA also employs a classification and regression tree (CART) to validate the GAN-generated synthetic dataset. Through the proposed framework, ADC is implemented, and an artificial neural network (ANN)-driven SA on an SDN-reliant IoT network is carried out. The performance of the SDN-reliant IoT network is analyzed under two conditions: namely, a normal operating scenario and a distributed-denial-of-service (DDoS) flooding attack scenario, using throughput, jitter, and response time as performance metrics. To statistically validate the experimental findings, hypothesis tests are conducted to confirm the significance of all the inferences. The results demonstrate that integrating LHS and GAN significantly enhances SA, enabling the identification of critical SDN parameters affecting the modeled SDN-reliant IoT network performance. Additionally, ADC is also better supported, achieving higher DDoS flooding attack detection accuracy through the incorporation of synthetic network observations that emulate real-time traffic. Overall, this work highlights the potential of hybridizing LHS-based DOE, GAN-driven data augmentation, and ANN-assisted SA for robust network behavioral analysis and characterization in a new hybrid framework. 
653 |a Software 
653 |a Design of experiments 
653 |a Classification 
653 |a Internet of Things 
653 |a Network topologies 
653 |a Sensitivity analysis 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Generative adversarial networks 
653 |a Hypercubes 
653 |a Machine learning 
653 |a Robustness 
653 |a Business metrics 
653 |a Parameter identification 
653 |a Data augmentation 
653 |a Performance measurement 
653 |a Artificial intelligence 
653 |a Neural networks 
653 |a Software-defined networking 
653 |a Denial of service attacks 
653 |a Quality of service 
653 |a Regression analysis 
653 |a Anomalies 
653 |a Real time 
653 |a Cybersecurity 
653 |a Synthetic data 
653 |a Latin hypercube sampling 
700 1 |a Akinsolu, Mobayode O  |u Faculty of Natural and Applied Sciences, Lead City University, Ibadan 200255, Oyo State, Nigeria; chekwube.ezechi@lcu.edu.ng (C.E.); sakpere.wilson@lcu.edu.ng (W.S.); asangodoyin@lincoln.ac.uk (A.O.S.); akinsolu.folahanmi@lcu.edu.ng (F.T.A.) 
700 1 |a Wilson, Sakpere  |u Faculty of Natural and Applied Sciences, Lead City University, Ibadan 200255, Oyo State, Nigeria; chekwube.ezechi@lcu.edu.ng (C.E.); sakpere.wilson@lcu.edu.ng (W.S.); asangodoyin@lincoln.ac.uk (A.O.S.); akinsolu.folahanmi@lcu.edu.ng (F.T.A.) 
700 1 |a Sangodoyin, Abimbola O  |u Faculty of Natural and Applied Sciences, Lead City University, Ibadan 200255, Oyo State, Nigeria; chekwube.ezechi@lcu.edu.ng (C.E.); sakpere.wilson@lcu.edu.ng (W.S.); asangodoyin@lincoln.ac.uk (A.O.S.); akinsolu.folahanmi@lcu.edu.ng (F.T.A.) 
700 1 |a Uyoata, Uyoata E  |u Department of Electrical and Electronics Engineering, Modibbo Adama University, Yola 640231, Adamawa State, Nigeria; uyoataue@mau.edu.ng 
700 1 |a Owusu-Nyarko Isaac  |u Department of Electrical and Electronic Engineering, Regional Maritime University, Accra P.O. GP 1115, Ghana; isaac.owusu-nyarko@rmu.edu.gh 
700 1 |a Akinsolu, Folahanmi T  |u Faculty of Natural and Applied Sciences, Lead City University, Ibadan 200255, Oyo State, Nigeria; chekwube.ezechi@lcu.edu.ng (C.E.); sakpere.wilson@lcu.edu.ng (W.S.); asangodoyin@lincoln.ac.uk (A.O.S.); akinsolu.folahanmi@lcu.edu.ng (F.T.A.) 
773 0 |t Information  |g vol. 16, no. 9 (2025), p. 783-821 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254540433/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254540433/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254540433/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch