BPMN-Based Design of Multi-Agent Systems: Personalized Language Learning Workflow Automation with RAG-Enhanced Knowledge Access †

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Information vol. 16, no. 9 (2025), p. 809-841
Yazar: Tebourbi Hedi
Diğer Yazarlar: Nouzri Sana, Yazan, Mualla, Meryem, El Fatimi, Najjar Amro, Abbas-Turki Abdeljalil, Dridi Mahjoub
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3254540524
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16090809  |2 doi 
035 |a 3254540524 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Tebourbi Hedi  |u Faculty of Science, Technology and Medicine, University of Luxembourg, Belval Campus, 2 Place de l’Université, L-4365 Esch-sur-Alzette, Luxembourg 
245 1 |a BPMN-Based Design of Multi-Agent Systems: Personalized Language Learning Workflow Automation with RAG-Enhanced Knowledge Access † 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The intersection of Artificial Intelligence (AI) and education is revolutionizing learning and teaching in this digital era, with Generative AI and large language models (LLMs) providing even greater possibilities for the future. The digital transformation of language education demands innovative approaches that combine pedagogical rigor with explainable AI (XAI) principles, particularly for low-resource languages. This paper presents a novel methodology that integrates Business Process Model and Notation (BPMN) with Multi-Agent Systems (MAS) to create transparent, workflow-driven language tutors. Our approach uniquely embeds XAI through three mechanisms: (1) BPMN’s visual formalism that makes agent decision-making auditable, (2) Retrieval-Augmented Generation (RAG) with verifiable knowledge provenance from textbooks of the National Institute of Languages of Luxembourg, and (3) human-in-the-loop validation of both content and pedagogical sequencing. To ensure realism in learner interaction, we integrate speech-to-text and text-to-speech technologies, creating an immersive, human-like learning environment. The system simulates intelligent tutoring through agents’ collaboration and dynamic adaptation to learner progress. We demonstrate this framework through a Luxembourgish language learning platform where specialized agents (Conversational, Reading, Listening, QA, and Grammar) operate within BPMN-modeled workflows. The system achieves high response faithfulness (0.82) and relevance (0.85) according to RAGA metrics, while speech integration using Whisper STT and Coqui TTS enables immersive practice. Evaluation with learners showed 85.8% satisfaction with contextual responses and 71.4% engagement rates, confirming the effectiveness of our process-driven approach. This work advances AI-powered language education by showing how formal process modeling can create pedagogically coherent and explainable tutoring systems. The architecture’s modularity supports extension to other low-resource languages while maintaining the transparency critical for educational trust. Future work will expand curriculum coverage and develop teacher-facing dashboards to further improve explainability. 
651 4 |a Luxembourg 
653 |a Modularity 
653 |a Language acquisition 
653 |a Collaboration 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a Text-to-speech 
653 |a Education 
653 |a Formalism 
653 |a Language instruction 
653 |a Decision making 
653 |a Workflow 
653 |a Generative artificial intelligence 
653 |a Knowledge management 
653 |a Business process engineering 
653 |a Multiagent systems 
653 |a Language modeling 
653 |a Explainable artificial intelligence 
653 |a Learning environment 
653 |a Luxembourgish 
653 |a Chatbots 
653 |a Speech recognition 
653 |a Tutoring 
653 |a Transparency 
653 |a Automation 
653 |a Conversation 
653 |a Models 
653 |a Textbooks 
653 |a Organizational effectiveness 
653 |a Speech 
653 |a Teaching 
653 |a Teachers 
653 |a Languages 
653 |a Curricula 
653 |a Responses 
653 |a Learning 
653 |a Agents 
653 |a Retrieval 
653 |a Transformation 
653 |a Language shift 
653 |a Satisfaction 
653 |a Language 
700 1 |a Nouzri Sana  |u Faculty of Science, Technology and Medicine, University of Luxembourg, Belval Campus, 2 Place de l’Université, L-4365 Esch-sur-Alzette, Luxembourg 
700 1 |a Yazan, Mualla  |u Faculty of Computer Science, Université de Technologie de Belfort-Montbéliard (UTBM), CIAD UR 7533, F-90010 Belfort, France; abdeljalil.abbas-turki@utbm.fr (A.A.-T.); mahjoub.dridi@utbm.fr (M.D.) 
700 1 |a Meryem, El Fatimi  |u Department of Computer Science, Faculty of Science Semlalia, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, Marrakech 40000, Morocco; meryem.elfatimi@uir.ac.ma 
700 1 |a Najjar Amro  |u Luxembourg Institute of Science and Technology, L-4362 Esch-sur-Alzette, Luxembourg; amro.najjar@list.lu 
700 1 |a Abbas-Turki Abdeljalil  |u Faculty of Computer Science, Université de Technologie de Belfort-Montbéliard (UTBM), CIAD UR 7533, F-90010 Belfort, France; abdeljalil.abbas-turki@utbm.fr (A.A.-T.); mahjoub.dridi@utbm.fr (M.D.) 
700 1 |a Dridi Mahjoub  |u Faculty of Computer Science, Université de Technologie de Belfort-Montbéliard (UTBM), CIAD UR 7533, F-90010 Belfort, France; abdeljalil.abbas-turki@utbm.fr (A.A.-T.); mahjoub.dridi@utbm.fr (M.D.) 
773 0 |t Information  |g vol. 16, no. 9 (2025), p. 809-841 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254540524/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254540524/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254540524/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch