Enhancing SCADA Security Using Generative Adversarial Network

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Cybersecurity and Privacy vol. 5, no. 3 (2025), p. 73-96
Hovedforfatter: Nguyen, Hong Nhung
Andre forfattere: Koo Jakeoung
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3254545791
003 UK-CbPIL
022 |a 2624-800X 
024 7 |a 10.3390/jcp5030073  |2 doi 
035 |a 3254545791 
045 2 |b d20250701  |b d20250930 
100 1 |a Nguyen, Hong Nhung 
245 1 |a Enhancing SCADA Security Using Generative Adversarial Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Supervisory Control and Data Acquisition (SCADA) systems play a critical role in industrial processes by providing real-time monitoring and control of equipment across large-scale, distributed operations. In the context of cyber security, Intrusion Detection Systems (IDSs) help protect SCADA systems by monitoring for unauthorized access, malicious activity, and policy violations, providing a layer of defense against potential intrusions. Given the critical role of SCADA systems and the increasing cyber risks, this paper highlights the importance of transitioning from traditional signature-based IDS to advanced AI-driven methods. Particularly, this study tackles the issue of intrusion detection in SCADA systems, which are critical yet vulnerable parts of industrial control systems. Traditional Intrusion Detection Systems (IDSs) often fall short in SCADA environments due to data scarcity, class imbalance, and the need for specialized anomaly detection suited to industrial protocols like DNP3. By integrating GANs, this study mitigates these limitations by generating synthetic data, enhancing classification accuracy and robustness in detecting cyber threats targeting SCADA systems. Remarkably, the proposed GAN-based IDS achieves an outstanding accuracy of 99.136%, paired with impressive detection speed, meeting the crucial need for real-time threat identification in industrial contexts. Beyond these empirical advancements, this paper suggests future exploration of explainable AI techniques to improve the interpretability of IDS models tailored to SCADA environments. Additionally, it encourages collaboration between academia and industry to develop extensive datasets that accurately reflect SCADA network traffic. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Data integrity 
653 |a Deep learning 
653 |a Distributed network protocols 
653 |a Infrastructure 
653 |a Artificial intelligence 
653 |a Network security 
653 |a Intrusion detection systems 
653 |a Water treatment 
653 |a Communication 
653 |a Cybersecurity 
653 |a Malware 
653 |a Ransomware 
700 1 |a Koo Jakeoung 
773 0 |t Journal of Cybersecurity and Privacy  |g vol. 5, no. 3 (2025), p. 73-96 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254545791/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254545791/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254545791/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch