Recent Advances in 3D Bioprinting of Porous Scaffolds for Tissue Engineering: A Narrative and Critical Review

保存先:
書誌詳細
出版年:Journal of Functional Biomaterials vol. 16, no. 9 (2025), p. 328-357
第一著者: Picado-Tejero, David
その他の著者: Mendoza-Cerezo, Laura, Rodríguez-Rego, Jesús M, Carrasco-Amador, Juan P, Marcos-Romero, Alfonso C
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3254549929
003 UK-CbPIL
022 |a 2079-4983 
024 7 |a 10.3390/jfb16090328  |2 doi 
035 |a 3254549929 
045 2 |b d20250901  |b d20250930 
084 |a 231477  |2 nlm 
100 1 |a Picado-Tejero, David  |u Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; davidpicateje@unex.es (D.P.-T.); lmencer@unex.es (L.M.-C.); jpcarrasco@unex.es (J.P.C.-A.); acmarcos@unex.es (A.C.M.-R.) 
245 1 |a Recent Advances in 3D Bioprinting of Porous Scaffolds for Tissue Engineering: A Narrative and Critical Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a 3D bioprinting has emerged as a key tool in tissue engineering by facilitating the creation of customized scaffolds with properties tailored to specific needs. Among the design parameters, porosity stands out as a determining factor, as it directly influences critical mechanical and biological properties such as nutrient diffusion, cell adhesion and structural integrity. This review comprehensively analyses the state of the art in scaffold design, emphasizing how porosity-related parameters such as pore size, geometry, distribution and interconnectivity affect cellular behavior and mechanical performance. It also addresses advances in manufacturing methods, such as additive manufacturing and computer-aided design (CAD), which allow the development of scaffolds with hierarchical structures and controlled porosity. In addition, the use of computational modelling, in particular finite element analysis (FEA), as an essential predictive tool to optimize the design of scaffolds under physiological conditions is highlighted. This narrative review analyzed 112 core articles retrieved primarily from Scopus (2014–2025) to provide a comprehensive and up-to-date synthesis. Despite recent progress, significant challenges persist, including the lack of standardized methodologies for characterizing and comparing porosity parameters across different studies. This review identifies these gaps and suggests future research directions, such as the development of unified characterization and classification systems and the enhancement of nanoscale resolution in bioprinting technologies. By integrating structural design with biological functionality, this review underscores the transformative potential of porosity research applied to 3D bioprinting, positioning it as a key strategy to meet current clinical needs in tissue engineering. 
653 |a Tissue engineering 
653 |a Biocompatibility 
653 |a Mechanical properties 
653 |a Finite element method 
653 |a Structural engineering 
653 |a Classification systems 
653 |a Trends 
653 |a Extracellular matrix 
653 |a Biological properties 
653 |a Structural design 
653 |a Three dimensional printing 
653 |a Manufacturing 
653 |a Design 
653 |a Cell adhesion 
653 |a Additive manufacturing 
653 |a Polymers 
653 |a Parameter identification 
653 |a Porosity 
653 |a Cell adhesion & migration 
653 |a Structural integrity 
653 |a 3-D printers 
653 |a Pore size 
653 |a Pore size distribution 
653 |a Computer aided design--CAD 
653 |a Molecular structure 
653 |a Scaffolds 
653 |a Design optimization 
653 |a Design parameters 
653 |a Geometry 
653 |a Morphology 
653 |a Production methods 
653 |a Hydrogels 
653 |a Environmental 
700 1 |a Mendoza-Cerezo, Laura  |u Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; davidpicateje@unex.es (D.P.-T.); lmencer@unex.es (L.M.-C.); jpcarrasco@unex.es (J.P.C.-A.); acmarcos@unex.es (A.C.M.-R.) 
700 1 |a Rodríguez-Rego, Jesús M  |u Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; davidpicateje@unex.es (D.P.-T.); lmencer@unex.es (L.M.-C.); jpcarrasco@unex.es (J.P.C.-A.); acmarcos@unex.es (A.C.M.-R.) 
700 1 |a Carrasco-Amador, Juan P  |u Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; davidpicateje@unex.es (D.P.-T.); lmencer@unex.es (L.M.-C.); jpcarrasco@unex.es (J.P.C.-A.); acmarcos@unex.es (A.C.M.-R.) 
700 1 |a Marcos-Romero, Alfonso C  |u Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; davidpicateje@unex.es (D.P.-T.); lmencer@unex.es (L.M.-C.); jpcarrasco@unex.es (J.P.C.-A.); acmarcos@unex.es (A.C.M.-R.) 
773 0 |t Journal of Functional Biomaterials  |g vol. 16, no. 9 (2025), p. 328-357 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254549929/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254549929/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254549929/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch