GPSFlow/Hydrate: A New Numerical Simulator for Modeling Subsurface Multicomponent and Multiphase Flow Behavior of Hydrate-Bearing Geologic Systems

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1622-1650
Autor principal: Xu Bingbo
Altres autors: Zhang, Keni
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3254551842
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13091622  |2 doi 
035 |a 3254551842 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Xu Bingbo  |u College of Life Science and Technology, Jinan University, Guangzhou 510632, China 
245 1 |a GPSFlow/Hydrate: A New Numerical Simulator for Modeling Subsurface Multicomponent and Multiphase Flow Behavior of Hydrate-Bearing Geologic Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Numerical simulation has played a crucial role in modeling the behavior of natural gas hydrate (NGH). However, the existing numerical simulators worldwide have exhibited limitations in functionality, convergence, and computational efficiency. In this study, we present a novel numerical simulator, GPSFlow/Hydrate, for modeling the behavior of hydrate-bearing geologic systems and for addressing the limitations in the existing simulators. It is capable of simulating multiphase and multicomponent flow in hydrate-bearing subsurface reservoirs under ambient conditions. The simulator incorporates multiple mass components, various phases, as well as heat transfer, and sand is treated as an independent non-Newtonian flow and modeled as a Bingham fluid. The CH4 or binary/ternary gas hydrate dissociation or formation, phase changes, and corresponding thermal effects are fully accounted for, as well as various hydrate formation and dissociation mechanisms, such as depressurization, thermal stimulation, and sand flow behavior. In terms of computation, the simulator utilizes a domain decomposition technology to achieve hybrid parallel computing through the use of distributed memory and shared memory. The verification of the GPSFlow/Hydrate simulator are evaluated through two 1D simulation cases, a sand flow simulation case, and five 3D gas production cases. A comparison of the 1D cases with various numerical simulators demonstrated the reliability of GPSFlow/Hydrate, while its application in modeling the sand flow further highlighted its capability to address the challenges of gas hydrate exploitation and its potential for broader practical use. Several successful 3D gas hydrate reservoir simulation cases, based on parameters from the Shenhu region of the South China Sea, revealed the correlation of initial hydrate saturation and reservoir condition with hydrate decomposition and gas production performance. Furthermore, multithread parallel computing achieved a 2–4-fold increase in efficiency over single-thread approaches, ensuring accurate solutions for complex physical processes and large-scale grids. Overall, the development of GPSFlow/Hydrate constitutes a significant scientific contribution to understanding gas hydrate formation and decomposition mechanisms, as well as to advancing multicomponent flow migration modeling and gas hydrate resource development. 
651 4 |a Alaska 
651 4 |a United States--US 
651 4 |a China 
651 4 |a Japan 
651 4 |a Canada 
651 4 |a North Slope 
653 |a Mathematical analysis 
653 |a Permafrost 
653 |a Multiphase flow 
653 |a Sediments 
653 |a Gas production 
653 |a Distributed memory 
653 |a Gas hydrates 
653 |a Efficiency 
653 |a Resource development 
653 |a Natural gas 
653 |a Oil and gas production 
653 |a Simulation 
653 |a Flow simulation 
653 |a Experiments 
653 |a Phase changes 
653 |a Temperature effects 
653 |a Simulators 
653 |a Domain decomposition methods 
653 |a Sand 
653 |a Dissociation 
653 |a Geology 
653 |a Modelling 
653 |a Methane 
653 |a Laboratories 
653 |a Hydrates 
653 |a Pressure reduction 
653 |a Heat transfer 
653 |a Gases 
653 |a Carbon dioxide 
653 |a Decomposition 
653 |a Reservoirs 
653 |a Mathematical models 
653 |a Non Newtonian flow 
653 |a Economic 
653 |a Environmental 
700 1 |a Zhang, Keni  |u Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 9 (2025), p. 1622-1650 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254551842/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254551842/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254551842/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch