Adaptive Path Tracking Control of X-Rudder AUV Under Roll Constraints

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1778-1800
Autor principal: Zhong Yaopeng
Otros Autores: Yuan Jianping, Wan, Lei, Zhou Zheyuan, Chen Qingdong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper addresses the spatial path tracking problem of the X-rudder autonomous underwater vehicle (AUV) under random sea current disturbances. An adaptive line-of-sight guidance-linear quadratic regulator (ALOS-LQR) control strategy with roll constraints is proposed to enhance the tracking control accuracy and stability of the X-rudder AUV in such environments. First, to mitigate the roll-instability-induced depth and heading coupling deviations caused by unknown environmental disturbances, a roll-constrained linear quadratic regulator (LQR) heading-pitch control strategy is designed. Second, to handle random disturbances and model uncertainties, a nonlinear extended state observer (ESO) is employed to estimate dynamic disturbances. At the kinematic level, an adaptive line-of-sight guidance method (ALOS) is utilized to transform the path tracking problem into a heading and pitch tracking problem, while compensating in real time for kinematic deviations caused by time-varying sea currents. Finally, the effectiveness of the proposed control scheme is validated through simulation experiments and lake trials. The results confirm the effectiveness of the proposed method. Specifically, the roll-constrained ESO-LQR reduces lateral and longitudinal errors by 77.73% and 80.61%, respectively, compared to the roll-constrained LQR. ALOS navigation reduced lateral and longitudinal errors by 85.89% and 94.87%, respectively, compared to LOS control, while exhibiting faster convergence than ILOS. In physical experiences, roll control reduced roll angle by 50.52% and depth error by 33.3%. Results demonstrate that the proposed control strategy significantly improves the control accuracy and interference resistance of the X-rudder AUV, exhibiting excellent accuracy and stability.
ISSN:2077-1312
DOI:10.3390/jmse13091778
Fuente:Engineering Database