AI-Based Optimization Techniques for Hydrodynamic and Structural Design in Ships: A Review

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1719-1742
Autor principal: Htein Nay Min
Otros Autores: Louvros Panagiotis, Stefanou Evangelos, Aung Myo, Hifi Nabile, Boulougouris Evangelos
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254558949
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13091719  |2 doi 
035 |a 3254558949 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Htein Nay Min  |u NAOME, University of Strathclyde, Glasgow G4 0LZ, UK; panagiotis.louvros@strath.ac.uk (P.L.); myo.aung@strath.ac.uk (M.A.); evangelos.boulougouris@strath.ac.uk (E.B.) 
245 1 |a AI-Based Optimization Techniques for Hydrodynamic and Structural Design in Ships: A Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Artificial Intelligence (AI) is increasingly integrated into ship design workflows, offering enhanced capabilities for hydrodynamic and structural optimization. This review focuses on AI-based methods applied to key design tasks such as hull resistance prediction, structural weight reduction, and performance-driven form optimization. Techniques examined include deep neural networks (DNNs), support vector machines (SVMs), tree-based ensemble models, genetic algorithms (GAs), and surrogate modeling approaches. Comparative analyses from the literature indicate that ensemble tree methods, such as XGBoost, have achieved predictive accuracies up to <inline-formula>R2</inline-formula> = 0.995 in speed–power modeling, marginally surpassing DNN performance, while GA-based structural optimization studies have reported weight reductions exceeding 10%. The findings confirm that no single method is universally superior; rather, effectiveness depends on the problem definition, data quality, and computational resources available. Hybrid strategies that combine physics-based modeling with data-driven learning have demonstrated improved generalization, reduced data requirements, and enhanced interpretability. Practical challenges remain, including limited access to open high-fidelity datasets, the computational demands of complex models, and balancing predictive accuracy with explainability. The review concludes that AI should be employed as a complementary toolkit to augment human expertise, with method selection guided by design objectives, constraints, and integration within the broader ship design process. 
653 |a Structural engineering 
653 |a Comparative analysis 
653 |a Artificial intelligence 
653 |a Hydrodynamics 
653 |a Modelling 
653 |a Weight 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Naval engineering 
653 |a Physics 
653 |a Computer applications 
653 |a Structural design 
653 |a Machine learning 
653 |a Design 
653 |a Efficiency 
653 |a Data reduction 
653 |a Accuracy 
653 |a Design optimization 
653 |a Structural weight 
653 |a Genetic algorithms 
653 |a Maritime industry 
653 |a Support vector machines 
653 |a Decision making 
653 |a Optimization 
653 |a Ship design 
653 |a Weight reduction 
653 |a Methods 
653 |a Optimization algorithms 
653 |a Architects 
653 |a Neural networks 
653 |a Economic 
700 1 |a Louvros Panagiotis  |u NAOME, University of Strathclyde, Glasgow G4 0LZ, UK; panagiotis.louvros@strath.ac.uk (P.L.); myo.aung@strath.ac.uk (M.A.); evangelos.boulougouris@strath.ac.uk (E.B.) 
700 1 |a Stefanou Evangelos  |u NAOME, University of Strathclyde, Glasgow G4 0LZ, UK; panagiotis.louvros@strath.ac.uk (P.L.); myo.aung@strath.ac.uk (M.A.); evangelos.boulougouris@strath.ac.uk (E.B.) 
700 1 |a Aung Myo  |u NAOME, University of Strathclyde, Glasgow G4 0LZ, UK; panagiotis.louvros@strath.ac.uk (P.L.); myo.aung@strath.ac.uk (M.A.); evangelos.boulougouris@strath.ac.uk (E.B.) 
700 1 |a Hifi Nabile  |u BAE Systems Maritime—Naval Ships, South Street, Scotstoun, Glasgow G14 OXN, UK; nabile.hifi@baesystems.com 
700 1 |a Boulougouris Evangelos  |u NAOME, University of Strathclyde, Glasgow G4 0LZ, UK; panagiotis.louvros@strath.ac.uk (P.L.); myo.aung@strath.ac.uk (M.A.); evangelos.boulougouris@strath.ac.uk (E.B.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 9 (2025), p. 1719-1742 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254558949/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254558949/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254558949/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch