Multi-Objective Optimization of Energy Storage Configuration and Dispatch in Diesel-Electric Propulsion Ships

保存先:
書誌詳細
出版年:Journal of Marine Science and Engineering vol. 13, no. 9 (2025), p. 1808-1835
第一著者: Sun Fupeng
その他の著者: Liu, Yanlin, Gan Huibing, Zang Shaokang, Lei Zhibo
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3254562115
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13091808  |2 doi 
035 |a 3254562115 
045 2 |b d20250901  |b d20250930 
084 |a 231479  |2 nlm 
100 1 |a Sun Fupeng 
245 1 |a Multi-Objective Optimization of Energy Storage Configuration and Dispatch in Diesel-Electric Propulsion Ships 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates the configuration of an energy storage system (ESS) and the optimization of energy management strategies for diesel-electric hybrid ships, with the goal of enhancing fuel economy and reducing emissions. An integrated mathematical model of the diesel generator set and the battery-based ESS is established. A rule-based energy management strategy (EMS) is proposed, in which the ship operating conditions are classified into berthing, maneuvering, and cruising modes. This classification enables coordinated power allocation between the diesel generator set and the ESS, while ensuring that the diesel engine operates within its high-efficiency region. The optimization framework considers the number of battery modules in series and the upper and lower bounds of the state of charge (SOC) as design variables. The dual objectives are set as lifecycle cost (LCC) and greenhouse gas (GHG) emissions, optimized using the Multi-Objective Coati Optimization Algorithm (MOCOA). The algorithm achieves a balance between global exploration and local exploitation. Numerical simulations indicate that, under the LCC-optimal solution, fuel consumption and GHG emissions are reduced by 16.12% and 13.18%, respectively, while under the GHG-minimization solution, reductions of 37.84% in fuel consumption and 35.02% in emissions are achieved. Compared with conventional algorithms, including Multi-Objective Particle Swarm Optimization (MOPSO), Non-dominated Sorting Dung Beetle Optimizer (NSDBO), and Multi-Objective Sparrow Search Algorithm (MOSSA), MOCOA exhibits superior convergence and solution diversity. The findings provide valuable engineering insights into the optimal configuration of ESS and EMS for hybrid ships, thereby contributing to the advancement of green shipping. 
653 |a Load 
653 |a Fuel cells 
653 |a Lower bounds 
653 |a Energy management 
653 |a Particle swarm optimization 
653 |a Diesel engines 
653 |a Shipping 
653 |a Mathematical models 
653 |a Greenhouse gases 
653 |a Batteries 
653 |a Modules 
653 |a Energy storage 
653 |a Multiple objective analysis 
653 |a Engines 
653 |a Energy resources 
653 |a Energy consumption 
653 |a Lithium 
653 |a Configurations 
653 |a Scheduling 
653 |a Genetic algorithms 
653 |a Berthing 
653 |a Energy 
653 |a Algorithms 
653 |a Search algorithms 
653 |a Emissions 
653 |a Alternative energy sources 
653 |a Cost control 
653 |a Optimization algorithms 
653 |a Fuel economy 
653 |a Ship handling 
653 |a Shipping industry 
653 |a Dung 
653 |a Fuel consumption 
653 |a Ships 
653 |a Diesel generators 
653 |a Life cycle costs 
653 |a Diesel 
653 |a Emissions control 
653 |a Carbon dioxide 
653 |a State of charge 
653 |a Energy efficiency 
653 |a Emission standards 
653 |a Electric propulsion 
653 |a Economic 
700 1 |a Liu, Yanlin 
700 1 |a Gan Huibing 
700 1 |a Zang Shaokang 
700 1 |a Lei Zhibo 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 9 (2025), p. 1808-1835 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254562115/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254562115/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254562115/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch