Decoding Wine Narratives with Hierarchical Attention: Classification, Visual Prompts, and Emerging E-Commerce Possibilities

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Journal of Theoretical and Applied Electronic Commerce Research vol. 20, no. 3 (2025), p. 212-251
मुख्य लेखक: Diaconita Vlad
अन्य लेखक: Belciu Anda, Corbea Alexandra Maria Ioana, Simonca Iuliana
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3254567663
003 UK-CbPIL
022 |a 0718-1876 
024 7 |a 10.3390/jtaer20030212  |2 doi 
035 |a 3254567663 
045 2 |b d20250701  |b d20250930 
084 |a 78730  |2 nlm 
100 1 |a Diaconita Vlad 
245 1 |a Decoding Wine Narratives with Hierarchical Attention: Classification, Visual Prompts, and Emerging E-Commerce Possibilities 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Wine reviews can connect words to flavours; they entwine sensory experiences into vivid stories. This research explores the intersection of artificial intelligence and oenology by using state-of-the-art neural networks to decipher the nuances in wine reviews. For more accurate wine classification and to capture the essence of what matters most to aficionados, we use Hierarchical Attention Networks enhanced with pre-trained embeddings. We also propose an approach to create captivating marketing images using advanced text-to-image generation models, mining a large review corpus for the most important descriptive terms and thus linking textual tasting notes to automatically generated imagery. Compared to more conventional models, our results show that hierarchical attention processes fused with rich linguistic embeddings better reflect the complexities of wine language. In addition to improving the accuracy of wine classification, this method provides consumers with immersive experiences by turning sensory descriptors into striking visual stories. Ultimately, our research helps modernise wine marketing and consumer engagement by merging deep learning with sensory analytics, proving how technology-driven solutions can amplify storytelling and shopping experiences in the digital marketplace. 
653 |a Modernization 
653 |a Machine learning 
653 |a Text categorization 
653 |a Marketing 
653 |a Deep learning 
653 |a Classification 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Sentiment analysis 
653 |a Customer feedback 
653 |a Product reviews 
653 |a Social networks 
653 |a Natural language processing 
653 |a Electronic commerce 
653 |a Image processing 
700 1 |a Belciu Anda 
700 1 |a Corbea Alexandra Maria Ioana 
700 1 |a Simonca Iuliana 
773 0 |t Journal of Theoretical and Applied Electronic Commerce Research  |g vol. 20, no. 3 (2025), p. 212-251 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254567663/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254567663/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254567663/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch