Time-Optimal Trajectory Planning for Industrial Robots Based on Improved Fire Hawk Optimizer
Gorde:
| Argitaratua izan da: | Machines vol. 13, no. 9 (2025), p. 764-787 |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , , , , |
| Argitaratua: |
MDPI AG
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3254577704 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2075-1702 | ||
| 024 | 7 | |a 10.3390/machines13090764 |2 doi | |
| 035 | |a 3254577704 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231531 |2 nlm | ||
| 100 | 1 | |a Ye Shuxia |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 245 | 1 | |a Time-Optimal Trajectory Planning for Industrial Robots Based on Improved Fire Hawk Optimizer | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Focusing on joint-space time-optimal trajectory planning for industrial robots, this study integrates 3-5-3 piecewise polynomial parameterization with an improved Fire Hawk Optimization algorithm (TFHO). Subject to joint position, velocity, and acceleration limits, segment durations are optimized as decision variables. TFHO employs Tent-chaotic initialization to improve the uniformity of initial solutions and a two-phase adaptive Lévy–Gaussian–Cauchy hybrid mutation to balance early global exploration with late local exploitation, mitigating premature convergence and enhancing stability. On benchmark functions, TFHO attains the lowest mean area under the convergence curve (AUC; lower is better). Wilcoxon signed-rank tests show statistically significant improvements over FHO, PSO, GWO, and WOA <inline-formula>(p≤0.05)</inline-formula>. Ablation studies indicate a pronounced reduction in run-to-run variability: the standard deviation decreases from 0.3157 (FHO) to 0.0023 with TFHO, a 99.27% drop. In an ABB IRB-2600 simulation case, the execution time is shortened from 12.00 s to 9.88 s (−17.66%) while preserving smooth and continuous kinematic profiles (position, velocity, and acceleration), demonstrating practical engineering applicability. | |
| 653 | |a Kinematics | ||
| 653 | |a Accuracy | ||
| 653 | |a Parameterization | ||
| 653 | |a Convergence | ||
| 653 | |a Trajectory optimization | ||
| 653 | |a Parameter identification | ||
| 653 | |a Planning | ||
| 653 | |a Rank tests | ||
| 653 | |a Ablation | ||
| 653 | |a Polynomials | ||
| 653 | |a Robots | ||
| 653 | |a Acceleration | ||
| 653 | |a Methods | ||
| 653 | |a Optimization algorithms | ||
| 653 | |a Trajectory planning | ||
| 653 | |a Efficiency | ||
| 653 | |a Industrial robots | ||
| 653 | |a Robotics | ||
| 700 | 1 | |a Jiang, Bo |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 700 | 1 | |a Zhang, Yongwei |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 700 | 1 | |a Cai Liwen |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 700 | 1 | |a Liang, Qi |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 700 | 1 | |a Siyu, Fei |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) | |
| 773 | 0 | |t Machines |g vol. 13, no. 9 (2025), p. 764-787 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3254577704/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3254577704/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3254577704/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |