Time-Optimal Trajectory Planning for Industrial Robots Based on Improved Fire Hawk Optimizer

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Machines vol. 13, no. 9 (2025), p. 764-787
Egile nagusia: Ye Shuxia
Beste egile batzuk: Jiang, Bo, Zhang, Yongwei, Cai Liwen, Liang, Qi, Siyu, Fei
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3254577704
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13090764  |2 doi 
035 |a 3254577704 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Ye Shuxia  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
245 1 |a Time-Optimal Trajectory Planning for Industrial Robots Based on Improved Fire Hawk Optimizer 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Focusing on joint-space time-optimal trajectory planning for industrial robots, this study integrates 3-5-3 piecewise polynomial parameterization with an improved Fire Hawk Optimization algorithm (TFHO). Subject to joint position, velocity, and acceleration limits, segment durations are optimized as decision variables. TFHO employs Tent-chaotic initialization to improve the uniformity of initial solutions and a two-phase adaptive Lévy–Gaussian–Cauchy hybrid mutation to balance early global exploration with late local exploitation, mitigating premature convergence and enhancing stability. On benchmark functions, TFHO attains the lowest mean area under the convergence curve (AUC; lower is better). Wilcoxon signed-rank tests show statistically significant improvements over FHO, PSO, GWO, and WOA <inline-formula>(p≤0.05)</inline-formula>. Ablation studies indicate a pronounced reduction in run-to-run variability: the standard deviation decreases from 0.3157 (FHO) to 0.0023 with TFHO, a 99.27% drop. In an ABB IRB-2600 simulation case, the execution time is shortened from 12.00 s to 9.88 s (−17.66%) while preserving smooth and continuous kinematic profiles (position, velocity, and acceleration), demonstrating practical engineering applicability. 
653 |a Kinematics 
653 |a Accuracy 
653 |a Parameterization 
653 |a Convergence 
653 |a Trajectory optimization 
653 |a Parameter identification 
653 |a Planning 
653 |a Rank tests 
653 |a Ablation 
653 |a Polynomials 
653 |a Robots 
653 |a Acceleration 
653 |a Methods 
653 |a Optimization algorithms 
653 |a Trajectory planning 
653 |a Efficiency 
653 |a Industrial robots 
653 |a Robotics 
700 1 |a Jiang, Bo  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
700 1 |a Zhang, Yongwei  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
700 1 |a Cai Liwen  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
700 1 |a Liang, Qi  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
700 1 |a Siyu, Fei  |u School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 212114, China; yeshuxia@just.edu.cn (S.Y.); 202210331115@stu.just.edu.cn (B.J.); ywzhang@just.edu.cn (Y.Z.); 231210302101@stu.just.edu.cn (L.C.); 241210302101@stu.just.edu.cn (S.F.) 
773 0 |t Machines  |g vol. 13, no. 9 (2025), p. 764-787 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254577704/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254577704/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254577704/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch