Recent Advances in Fault Detection and Analysis of Synchronous Motors: A Review

Uloženo v:
Podrobná bibliografie
Vydáno v:Machines vol. 13, no. 9 (2025), p. 815-861
Hlavní autor: Ion-Stelian, Gherghina
Další autoři: Bizon Nicu, Gabriel-Vasile, Iana, Bogdan-Valentin, Vasilică
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254578633
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13090815  |2 doi 
035 |a 3254578633 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Ion-Stelian, Gherghina  |u Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology Politehnica Bucharest, 313 Spl. Independenței, 060042 Bucharest, Romania 
245 1 |a Recent Advances in Fault Detection and Analysis of Synchronous Motors: A Review 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a Synchronous motors are pivotal to modern industrial systems, particularly those aligned with Industry 4.0 initiatives, due to their high precision, reliability, and energy efficiency. This review systematically examines fault detection and diagnostic techniques for synchronous motors from 2021 to 2025, emphasizing recent methodological innovations. A PRISMA-guided literature survey combined with scientometric analysis via VOSviewer 1.6.20 highlights growing reliance on data-driven approaches, especially deep learning models such as CNNs, RNNs, and hybrid ensembles. Model-based and hybrid techniques are also explored for their interpretability and robustness. Cross-domain methods, including acoustic and flux-based diagnostics, offer non-invasive alternatives with promising diagnostic accuracy. Key challenges persist, including data imbalance, non-stationary operating conditions, and limited real-world generalization. Emerging trends in sensor fusion, digital twins, and explainable AI suggest a shift toward scalable, real-time fault monitoring. This review consolidates theoretical frameworks, comparative analyses, and application-oriented insights, ultimately contributing to the advancement of predictive maintenance and fault-tolerant control in synchronous motor systems. 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Trends 
653 |a Optimization techniques 
653 |a Fault tolerance 
653 |a Signal processing 
653 |a Industry 4.0 
653 |a Machine learning 
653 |a Fault detection 
653 |a Explainable artificial intelligence 
653 |a Efficiency 
653 |a Literature reviews 
653 |a Motors 
653 |a Embedded systems 
653 |a Scientometrics 
653 |a Fault diagnosis 
653 |a Maintenance costs 
653 |a Neural networks 
653 |a Classification 
653 |a Digital twins 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Real time 
653 |a Predictive maintenance 
700 1 |a Bizon Nicu  |u Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology Politehnica Bucharest, 313 Spl. Independenței, 060042 Bucharest, Romania 
700 1 |a Gabriel-Vasile, Iana  |u Faculty of Electronics, Communication and Computers, National University of Science and Technology Politehnica Bucharest, Pitești University Centre, 1 Târgul din Vale, 110040 Pitești, Romania; vasile_gabriel.iana@upb.ro 
700 1 |a Bogdan-Valentin, Vasilică  |u Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, 313 Spl. Independenței, 060042 Bucharest, Romania; bogdan.vasilica@upb.ro 
773 0 |t Machines  |g vol. 13, no. 9 (2025), p. 815-861 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254578633/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254578633/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254578633/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch