Reliability Assessment for Small-Sample Accelerated Life Tests with Normal Distribution

Збережено в:
Бібліографічні деталі
Опубліковано в::Machines vol. 13, no. 9 (2025), p. 850-864
Автор: Guo Jianchao
Інші автори: Fu Huimin
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3254578645
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13090850  |2 doi 
035 |a 3254578645 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Guo Jianchao 
245 1 |a Reliability Assessment for Small-Sample Accelerated Life Tests with Normal Distribution 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A significant challenge in the accelerated life test (ALT) is the reliance on large sample sizes and multiple stress levels, which results in high costs and long test durations. To address this issue, this paper develops a new reliability assessment method for small-sample ALTs with normal distribution (or lognormal distribution) and censoring. This method enables a high-confidence evaluation of the percentile lifetime (reliable lifetime) under normal operating stress level using censored data from only two accelerated stress levels. Firstly, a relationship is established between the percentile lifetime at normal stress level and the distribution parameters at accelerated stress levels. Subsequently, an initial estimate of the percentile lifetime is obtained from failure data, and its confidence is then refined using a Bayesian update with the nonfailures. Finally, an exact one-sided lower confidence limit (LCL) for the percentile lifetime and reliability is determined. This paper derives an analytical formula for LCLs under Type-II censoring scenarios and further extend the method to accommodate Type-I censored and general incomplete data. The Monte Carlo simulations and case studies show that, the proposed methods significantly reduce the required sample size and testing duration while offering superior theoretical rigor and accuracy than the conventional methods. 
653 |a Load 
653 |a Reliability analysis 
653 |a Lifetime 
653 |a Humidity 
653 |a Failure 
653 |a Stress 
653 |a Confidence limits 
653 |a Normal distribution 
653 |a Monte Carlo simulation 
653 |a Accelerated life tests 
653 |a Probability 
653 |a Engineering 
653 |a Methods 
653 |a Normal stress 
653 |a Statistical analysis 
653 |a Parameter estimation 
700 1 |a Fu Huimin 
773 0 |t Machines  |g vol. 13, no. 9 (2025), p. 850-864 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254578645/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254578645/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254578645/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch