Quantum Machine Learning and Deep Learning: Fundamentals, Algorithms, Techniques, and Real-World Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 7, no. 3 (2025), p. 75-140
Autor principal: Revythi, Maria
Otros Autores: Koukiou Georgia
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254581066
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7030075  |2 doi 
035 |a 3254581066 
045 2 |b d20250701  |b d20250930 
100 1 |a Revythi, Maria 
245 1 |a Quantum Machine Learning and Deep Learning: Fundamentals, Algorithms, Techniques, and Real-World Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Quantum computing, with its foundational principles of superposition and entanglement, has the potential to provide significant quantum advantages, addressing challenges that classical computing may struggle to overcome. As data generation continues to grow exponentially and technological advancements accelerate, classical machine learning algorithms increasingly face difficulties in solving complex real-world problems. The integration of classical machine learning with quantum information processing has led to the emergence of quantum machine learning, a promising interdisciplinary field. This work provides the reader with a bottom-up view of quantum circuits starting from quantum data representation, quantum gates, the fundamental quantum algorithms, and more complex quantum processes. Thoroughly studying the mathematics behind them is a powerful tool to guide scientists entering this domain and exploring their connection to quantum machine learning. Quantum algorithms such as Shor’s algorithm, Grover’s algorithm, and the Harrow–Hassidim–Lloyd (HHL) algorithm are discussed in detail. Furthermore, real-world implementations of quantum machine learning and quantum deep learning are presented in fields such as healthcare, bioinformatics and finance. These implementations aim to enhance time efficiency and reduce algorithmic complexity through the development of more effective quantum algorithms. Therefore, a comprehensive understanding of the fundamentals of these algorithms is crucial. 
653 |a Machine learning 
653 |a Quantum computing 
653 |a Computers 
653 |a Quantum phenomena 
653 |a Data processing 
653 |a Quantum physics 
653 |a Deep learning 
653 |a Quantum entanglement 
653 |a Fourier transforms 
653 |a Neural networks 
653 |a Algorithms 
653 |a Complexity 
653 |a 20th century 
653 |a Bioinformatics 
700 1 |a Koukiou Georgia 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 3 (2025), p. 75-140 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254581066/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254581066/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254581066/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch